Answer
Verified
429.9k+ views
Hint: In this question, we will apply the trigonometry formula $\sin x = {\left( { - 1} \right)^{n + 1}}\sin \left[ {n\pi - x} \right]$. Because when we apply the limit over the given function, it will give $\sin \infty $. So, we have to check for two cases of$\sin (n\pi - x)$. The first case is n is even. When we put the even values of n they will lie in the fourth quadrant. In the fourth quadrant, the value of the sine function is negative. Therefore, $\sin (n\pi - x) = - \sin x$. The second case is odd. When we put the odd values of n they will lie in the second quadrant. In the second quadrant, the value of sin function is positive. Therefore, $\sin (n\pi - x) = \sin x$. Hence, we can write $\sin (n\pi - x) = {\left( { - 1} \right)^{n + 1}}\sin x$ in a generalized form.
Then apply rationalization to the numerator. Here, we will apply rationalization because when we will apply the limit to the function we will get the value $\sin \left( {\infty - \infty } \right)$, which is not possible.
The other algebraic formula that we will apply here during simplification is as stated below.
$\left( {a - b} \right)\left( {a + b} \right) = \left( {{a^2} - {b^2}} \right)$
Complete step by step solution:
In this question, it is given that
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \sin \left[ {\pi \sqrt {{n^2} + 1} } \right]$
As we know the trigonometry formula $\sin x = {\left( { - 1} \right)^{n + 1}}\sin \left[ {n\pi - x} \right]$.
Here, substitute the value of x is equal to $\pi \sqrt {{n^2} + 1} $.
Therefore, we will get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \left( {n\pi - \pi \sqrt {{n^2} + 1} } \right)$
Take out $\pi $ as a common factor. Because it has a constant value.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {n - \sqrt {{n^2} + 1} } \right)$
When we substitute value $n = \infty $, we will get $\sin \left( {\infty - \infty } \right)$. That is not possible.
Therefore, Let us rationalize the numerator of the above step.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{\left( {n - \sqrt {{n^2} + 1} } \right)\left( {n + \sqrt {{n^2} + 1} } \right)}}{{n + \sqrt {{n^2} + 1} }}} \right)$
Let us apply the formula $\left( {a - b} \right)\left( {a + b} \right) = \left( {{a^2} - {b^2}} \right)$.
Here, $a = n$ and $b = \sqrt {{n^2} + 1} $
So,
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{{n^2} - {{\left( {\sqrt {{n^2} + 1} } \right)}^2}}}{{n + \sqrt {{n^2} + 1} }}} \right)$
Let us simplify the above step.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{{n^2} - ({n^2} + 1)}}{{n + \sqrt {{n^2} + 1} }}} \right)$
Now, open the brackets and multiply with -1 with bracket values.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{{n^2} - {n^2} - 1}}{{n + \sqrt {{n^2} + 1} }}} \right)$
By applying subtraction,
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{ - 1}}{{n + \sqrt {{n^2} + 1} }}} \right)$
When we substitute value $n = \infty $, then we will get,
$ \Rightarrow {\left( { - 1} \right)^{\infty + 1}}\sin \pi \left( {\dfrac{{ - 1}}{\infty }} \right)$
As we know that the value of $\dfrac{1}{\infty }$ is 0.
Therefore,
$ \Rightarrow {\left( { - 1} \right)^{\infty + 1}}\sin \pi \left( 0 \right)$
0 multiply with any number the answer will be 0.
$ \Rightarrow {\left( { - 1} \right)^{\infty + 1}}\sin 0$
We know the value of $\sin 0$ is 0.
Therefore, the answer will be,
$ \Rightarrow 0$
Hence,
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \sin \left[ {\pi \sqrt {{n^2} + 1} } \right] = 0$
Option B is the correct answer.
Note: We have to remember the trigonometry formula and trigonometry ratio values at the angle $0^\circ ,30^\circ ,45^\circ ,60^\circ ,90^\circ $. And we have to remember the trigonometric function values in all quadrants.
In the first quadrant, sine and cosine functions are positive.
In the second quadrant, the sine function is positive and the cosine function is negative.
In the third quadrant, sine and cosine functions are negative.
In the fourth quadrant, the cosine function is positive and the sine function is negative.
Then apply rationalization to the numerator. Here, we will apply rationalization because when we will apply the limit to the function we will get the value $\sin \left( {\infty - \infty } \right)$, which is not possible.
The other algebraic formula that we will apply here during simplification is as stated below.
$\left( {a - b} \right)\left( {a + b} \right) = \left( {{a^2} - {b^2}} \right)$
Complete step by step solution:
In this question, it is given that
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \sin \left[ {\pi \sqrt {{n^2} + 1} } \right]$
As we know the trigonometry formula $\sin x = {\left( { - 1} \right)^{n + 1}}\sin \left[ {n\pi - x} \right]$.
Here, substitute the value of x is equal to $\pi \sqrt {{n^2} + 1} $.
Therefore, we will get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \left( {n\pi - \pi \sqrt {{n^2} + 1} } \right)$
Take out $\pi $ as a common factor. Because it has a constant value.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {n - \sqrt {{n^2} + 1} } \right)$
When we substitute value $n = \infty $, we will get $\sin \left( {\infty - \infty } \right)$. That is not possible.
Therefore, Let us rationalize the numerator of the above step.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{\left( {n - \sqrt {{n^2} + 1} } \right)\left( {n + \sqrt {{n^2} + 1} } \right)}}{{n + \sqrt {{n^2} + 1} }}} \right)$
Let us apply the formula $\left( {a - b} \right)\left( {a + b} \right) = \left( {{a^2} - {b^2}} \right)$.
Here, $a = n$ and $b = \sqrt {{n^2} + 1} $
So,
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{{n^2} - {{\left( {\sqrt {{n^2} + 1} } \right)}^2}}}{{n + \sqrt {{n^2} + 1} }}} \right)$
Let us simplify the above step.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{{n^2} - ({n^2} + 1)}}{{n + \sqrt {{n^2} + 1} }}} \right)$
Now, open the brackets and multiply with -1 with bracket values.
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{{n^2} - {n^2} - 1}}{{n + \sqrt {{n^2} + 1} }}} \right)$
By applying subtraction,
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\left( { - 1} \right)^{n + 1}}\sin \pi \left( {\dfrac{{ - 1}}{{n + \sqrt {{n^2} + 1} }}} \right)$
When we substitute value $n = \infty $, then we will get,
$ \Rightarrow {\left( { - 1} \right)^{\infty + 1}}\sin \pi \left( {\dfrac{{ - 1}}{\infty }} \right)$
As we know that the value of $\dfrac{1}{\infty }$ is 0.
Therefore,
$ \Rightarrow {\left( { - 1} \right)^{\infty + 1}}\sin \pi \left( 0 \right)$
0 multiply with any number the answer will be 0.
$ \Rightarrow {\left( { - 1} \right)^{\infty + 1}}\sin 0$
We know the value of $\sin 0$ is 0.
Therefore, the answer will be,
$ \Rightarrow 0$
Hence,
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \sin \left[ {\pi \sqrt {{n^2} + 1} } \right] = 0$
Option B is the correct answer.
Note: We have to remember the trigonometry formula and trigonometry ratio values at the angle $0^\circ ,30^\circ ,45^\circ ,60^\circ ,90^\circ $. And we have to remember the trigonometric function values in all quadrants.
In the first quadrant, sine and cosine functions are positive.
In the second quadrant, the sine function is positive and the cosine function is negative.
In the third quadrant, sine and cosine functions are negative.
In the fourth quadrant, the cosine function is positive and the sine function is negative.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE