Answer
Verified
500.4k+ views
Hint: Compare the equation with the general quadratic equation, then use the formula for finding out the roots of a quadratic equation.
The given quadratic equation is $3{x^2} - 4x + \frac{{20}}{3} = 0$,
Comparing it with general quadratic equation, $a{x^2} + bx + c = 0$, we have:
$a = 3,b = - 4$ and $c = \frac{{20}}{3}$
And we know that the roots of quadratic equation is given as:
$\alpha ,\beta = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values from the above equation, we have:
$
\Rightarrow \alpha ,\beta = \frac{{ - ( - 4) \pm \sqrt {{{( - 4)}^2} - 4 \times 3 \times \frac{{20}}{3}} }}{{2(3)}}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm \sqrt {16 - 80} }}{6} = \frac{{4 \pm \sqrt { - 64} }}{6}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm 8i}}{6} = \frac{{2 \pm 4i}}{3} \\
$
$ \Rightarrow \alpha = \frac{2}{3} + \frac{4}{3}i$ and $\beta = \frac{2}{3} - \frac{4}{3}i.$
Thus the roots of the equation are $\frac{2}{3} + \frac{4}{3}i$ and $\frac{2}{3} - \frac{4}{3}i$
Note: Discriminant of a quadratic equation is:
$ \Rightarrow D = {b^2} - 4ac$
If the discriminant of a quadratic equation is less than zero (i.e. negative), the roots of the equation will always be imaginary and they will be complex conjugates of each other.
The given quadratic equation is $3{x^2} - 4x + \frac{{20}}{3} = 0$,
Comparing it with general quadratic equation, $a{x^2} + bx + c = 0$, we have:
$a = 3,b = - 4$ and $c = \frac{{20}}{3}$
And we know that the roots of quadratic equation is given as:
$\alpha ,\beta = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values from the above equation, we have:
$
\Rightarrow \alpha ,\beta = \frac{{ - ( - 4) \pm \sqrt {{{( - 4)}^2} - 4 \times 3 \times \frac{{20}}{3}} }}{{2(3)}}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm \sqrt {16 - 80} }}{6} = \frac{{4 \pm \sqrt { - 64} }}{6}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm 8i}}{6} = \frac{{2 \pm 4i}}{3} \\
$
$ \Rightarrow \alpha = \frac{2}{3} + \frac{4}{3}i$ and $\beta = \frac{2}{3} - \frac{4}{3}i.$
Thus the roots of the equation are $\frac{2}{3} + \frac{4}{3}i$ and $\frac{2}{3} - \frac{4}{3}i$
Note: Discriminant of a quadratic equation is:
$ \Rightarrow D = {b^2} - 4ac$
If the discriminant of a quadratic equation is less than zero (i.e. negative), the roots of the equation will always be imaginary and they will be complex conjugates of each other.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE