Answer
Verified
497.1k+ views
Hint: Try to write the 11x in the form of 2ab. Rearrange them in LHS and RHS in order to get two perfect squares on both sides. Apply general algebra rules and extract the roots.
Complete step-by-step answer:
Given equation is \[{{x}^{2}}+11x+30=0\].
Or, we can write \[{{x}^{2}}+2(\dfrac{11}{2})x+30=0\].
\[\Rightarrow \] \[{{x}^{2}}+2(\dfrac{11}{2})x+{{(\dfrac{11}{2})}^{2}}+30-{{(\dfrac{11}{2})}^{2}}=0\] [Adding \[{{\left( \dfrac{11}{2} \right)}^{2}}\] on both sides]
Now, we know that,\[{{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}}\]. Therefore, we can write the LHS in this form.
So, \[{{(x+\dfrac{11}{2})}^{2}}=\dfrac{121}{4}-30=\dfrac{121-120}{4}=\dfrac{1}{4}\]
Now, taking square roots on both sides, we get two equations as taking square roots gives both positive and negative values.
\[x+\dfrac{11}{2}=\dfrac{1}{2}\] ………. (1) and \[x+\dfrac{11}{2}=-\dfrac{1}{2}\]………… (2)
From (1) we get \[x=\dfrac{1}{2}-\dfrac{11}{2}=\dfrac{1-11}{2}=-\dfrac{10}{2}=-5\] and from (2) we get \[x=-\dfrac{1}{2}-\dfrac{11}{2}=-(\dfrac{1+11}{2})=-\dfrac{12}{2}=-6\].
These are the two roots of the given quadratic equation, which can be verified by putting the values of the roots in place of x and satisfying the equation.
Therefore, the roots of the given equation are -5 and -6 respectively.
Note: A quadratic equation must have at most (real/imaginary) two roots (all not necessarily distinct). Therefore, while taking square roots we should consider both positive and negative values. We can derive the well-known quadratic law for finding roots from this completing the square method. This method is the most fundamental method.
Complete step-by-step answer:
Given equation is \[{{x}^{2}}+11x+30=0\].
Or, we can write \[{{x}^{2}}+2(\dfrac{11}{2})x+30=0\].
\[\Rightarrow \] \[{{x}^{2}}+2(\dfrac{11}{2})x+{{(\dfrac{11}{2})}^{2}}+30-{{(\dfrac{11}{2})}^{2}}=0\] [Adding \[{{\left( \dfrac{11}{2} \right)}^{2}}\] on both sides]
Now, we know that,\[{{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}}\]. Therefore, we can write the LHS in this form.
So, \[{{(x+\dfrac{11}{2})}^{2}}=\dfrac{121}{4}-30=\dfrac{121-120}{4}=\dfrac{1}{4}\]
Now, taking square roots on both sides, we get two equations as taking square roots gives both positive and negative values.
\[x+\dfrac{11}{2}=\dfrac{1}{2}\] ………. (1) and \[x+\dfrac{11}{2}=-\dfrac{1}{2}\]………… (2)
From (1) we get \[x=\dfrac{1}{2}-\dfrac{11}{2}=\dfrac{1-11}{2}=-\dfrac{10}{2}=-5\] and from (2) we get \[x=-\dfrac{1}{2}-\dfrac{11}{2}=-(\dfrac{1+11}{2})=-\dfrac{12}{2}=-6\].
These are the two roots of the given quadratic equation, which can be verified by putting the values of the roots in place of x and satisfying the equation.
Therefore, the roots of the given equation are -5 and -6 respectively.
Note: A quadratic equation must have at most (real/imaginary) two roots (all not necessarily distinct). Therefore, while taking square roots we should consider both positive and negative values. We can derive the well-known quadratic law for finding roots from this completing the square method. This method is the most fundamental method.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE