
Solve the following system of equations $x + y = 5xy$, $3x + 2y = 13xy,$ where $x \ne 0,
y \ne 0$.
Answer
620.7k+ views
Hint: To solve this problem we need to convert the given equation into a proper equation where the R.H.S part should be constant. Here the proper equation can be obtained by dividing the equation with xy term on both sides.
Complete step-by-step answer:
Given equation are
$x + y = 5xy - - - - - - - - - > (1)$
$3x + 2y = 13xy - - - - - - - - > (2)$
Now here let us divide both the equation with $'xy'$ term then we get
From equation (1)
$ \Rightarrow \dfrac{x}{{xy}} + \dfrac{y}{{xy}} = \dfrac{{5xy}}{{xy}}$
On cancellation we get the equation as
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{y} = 5 - - - - - - > (3)$
From equation (2)
$ \Rightarrow \dfrac{{3x}}{{xy}} + \dfrac{{2y}}{{xy}} = \dfrac{{13}}{{xy}}$
On cancellation we get
$ \Rightarrow \dfrac{3}{x} + \dfrac{2}{y} = 13 - - - - - - - - > (4)$
Now let us multiply equation (3) with 5 we get
$ \Rightarrow \dfrac{3}{x} + \dfrac{3}{y} = 15 - - - - - - - - > (5)$
On subtracting equations (5)(4) we get
$
\Rightarrow \dfrac{1}{y} = 2 \\
\Rightarrow y = \dfrac{1}{2} \\
$
On substituting y value either equation (4) or (5) we get
$ \Rightarrow x = \dfrac{1}{3}$
Hence we solved both equations and got x,y values.
Note: In this problem to get proper equation format we have divided both the equation with xy term and later subtracted the equation .Generally we ignore to convert the given equation.
Complete step-by-step answer:
Given equation are
$x + y = 5xy - - - - - - - - - > (1)$
$3x + 2y = 13xy - - - - - - - - > (2)$
Now here let us divide both the equation with $'xy'$ term then we get
From equation (1)
$ \Rightarrow \dfrac{x}{{xy}} + \dfrac{y}{{xy}} = \dfrac{{5xy}}{{xy}}$
On cancellation we get the equation as
$ \Rightarrow \dfrac{1}{x} + \dfrac{1}{y} = 5 - - - - - - > (3)$
From equation (2)
$ \Rightarrow \dfrac{{3x}}{{xy}} + \dfrac{{2y}}{{xy}} = \dfrac{{13}}{{xy}}$
On cancellation we get
$ \Rightarrow \dfrac{3}{x} + \dfrac{2}{y} = 13 - - - - - - - - > (4)$
Now let us multiply equation (3) with 5 we get
$ \Rightarrow \dfrac{3}{x} + \dfrac{3}{y} = 15 - - - - - - - - > (5)$
On subtracting equations (5)(4) we get
$
\Rightarrow \dfrac{1}{y} = 2 \\
\Rightarrow y = \dfrac{1}{2} \\
$
On substituting y value either equation (4) or (5) we get
$ \Rightarrow x = \dfrac{1}{3}$
Hence we solved both equations and got x,y values.
Note: In this problem to get proper equation format we have divided both the equation with xy term and later subtracted the equation .Generally we ignore to convert the given equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

