
Solve the following system of linear equations by Cramer’s rule
x + y = 0, y + z = 1 and z + x = 3.
Answer
568.2k+ views
Hint: To solve this question firstly we will write the system of linear equations in determinant form. Then, we will find the determinants${{D}_{1}}$, ${{D}_{2}}$ and${{D}_{3}}$. And then using formula $x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$, we will evaluate the variables x, y and z.
Complete step by step answer:
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Also, we know that if we have linear equation as, px + qy + rz = u, lx + my + nz = v and ax + by + cz = w, then we can represent coefficients of system of linear equation in determinant as $D=\left| \begin{matrix}
p & q & r \\
l & m & n \\
a & b & c \\
\end{matrix} \right|$
Then in Cramer’s rule, we find three more determinants as ${{D}_{1}}=\left| \begin{matrix}
u & q & r \\
v & m & n \\
w & b & c \\
\end{matrix} \right|$, \[{{D}_{2}}=\left| \begin{matrix}
p & u & r \\
l & v & n \\
a & w & c \\
\end{matrix} \right|\] and \[{{D}_{3}}=\left| \begin{matrix}
p & q & u \\
l & m & v \\
a & b & w \\
\end{matrix} \right|\] and we evaluate $x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
Now, we can re – write the system of linear equations as,
x + y + 0.z = 0,
0.x + y + z = 1,
x + 0.y + z = 3 and in determinant form as
$D=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
$D=1(1)-1(-1)+0$
$\Rightarrow $ D = 2
Now, ${{D}_{1}}=\left| \begin{matrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
3 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{1}}=0-1(1-3)+0$
$\Rightarrow {{D}_{1}}=2$
Now, \[{{D}_{2}}=\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{2}}=1(1-3)-0+0$
$\Rightarrow {{D}_{2}}=-2$
Now, \[{{D}_{3}}=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
\[{{D}_{3}}=1(3-1)-1+0\]
$\Rightarrow {{D}_{3}}=1$
So, we know that according to Cramer’s rule
$x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
So, $x=\dfrac{2}{2}$,$y=\dfrac{2}{-2}$ and $z=\dfrac{2}{1}$
We get, x = 1, y = -1 and z = 2.
Note: To solve this question, one must know how we expand the determinants and also one must know the concept of Cramer’s rule. Also, this rule works for any number of variable linear equations. While solving determinant and evaluating the values of variable x, y and z try not to make any calculation mistakes as this may give you wrong values of variables.
Complete step by step answer:
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Also, we know that if we have linear equation as, px + qy + rz = u, lx + my + nz = v and ax + by + cz = w, then we can represent coefficients of system of linear equation in determinant as $D=\left| \begin{matrix}
p & q & r \\
l & m & n \\
a & b & c \\
\end{matrix} \right|$
Then in Cramer’s rule, we find three more determinants as ${{D}_{1}}=\left| \begin{matrix}
u & q & r \\
v & m & n \\
w & b & c \\
\end{matrix} \right|$, \[{{D}_{2}}=\left| \begin{matrix}
p & u & r \\
l & v & n \\
a & w & c \\
\end{matrix} \right|\] and \[{{D}_{3}}=\left| \begin{matrix}
p & q & u \\
l & m & v \\
a & b & w \\
\end{matrix} \right|\] and we evaluate $x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
Now, we can re – write the system of linear equations as,
x + y + 0.z = 0,
0.x + y + z = 1,
x + 0.y + z = 3 and in determinant form as
$D=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
$D=1(1)-1(-1)+0$
$\Rightarrow $ D = 2
Now, ${{D}_{1}}=\left| \begin{matrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
3 & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{1}}=0-1(1-3)+0$
$\Rightarrow {{D}_{1}}=2$
Now, \[{{D}_{2}}=\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
${{D}_{2}}=1(1-3)-0+0$
$\Rightarrow {{D}_{2}}=-2$
Now, \[{{D}_{3}}=\left| \begin{matrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3 \\
\end{matrix} \right|\]
Expanding determinant along ${{R}_{1}}$, we get
\[{{D}_{3}}=1(3-1)-1+0\]
$\Rightarrow {{D}_{3}}=1$
So, we know that according to Cramer’s rule
$x=\dfrac{D}{{{D}_{1}}}$ , $y=\dfrac{D}{{{D}_{2}}}$ and $z=\dfrac{D}{{{D}_{3}}}$.
So, $x=\dfrac{2}{2}$,$y=\dfrac{2}{-2}$ and $z=\dfrac{2}{1}$
We get, x = 1, y = -1 and z = 2.
Note: To solve this question, one must know how we expand the determinants and also one must know the concept of Cramer’s rule. Also, this rule works for any number of variable linear equations. While solving determinant and evaluating the values of variable x, y and z try not to make any calculation mistakes as this may give you wrong values of variables.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

