
Solve the following trigonometric equation:
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0$.
Answer
621.9k+ views
Hint: By the use of trigonometric formulae we need to find the value of $'\theta '$ satisfying the given equation.
Given,
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0 \to (1)$
Now, we can rewrite the equation (1) as
$
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) - \sqrt 3 (2\cos \theta \sin \theta ) = 0 \\
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) = \sqrt 3 (2\cos \theta \sin \theta ) \to (2) \\
$
We know that $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $ and $\sin 2\theta = 2\sin \theta \cos \theta $. Substituting in equation (2), we get
$
\Rightarrow 3\cos 2\theta = \sqrt 3 \sin 2\theta \\
\Rightarrow \dfrac{3}{{\sqrt 3 }} = \dfrac{{\sin 2\theta }}{{\cos 2\theta }} \\
\Rightarrow \tan 2\theta = \sqrt 3 \\
$
Now, let us write the value of $\sqrt 3 $ in terms of $\tan $ i.e.., $\tan (\dfrac{\pi }{3}) = \sqrt 3 $, Substituting in the above equation, we get
$
\Rightarrow \tan 2\theta = \tan (\dfrac{\pi }{3}) \\
\Rightarrow 2\theta = n\pi + \dfrac{\pi }{3} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} + \dfrac{\pi }{6} \\
$
Hence, the value of $'\theta '$ satisfying the given equation is $\dfrac{{n\pi }}{2} + \dfrac{\pi }{6}$, where n is an integer.
Note: Here, we have added $'n\pi '$ to the $\dfrac{\pi }{3}$ after cancelling the tan on the both sides as $'\pi '$ is the period of the tan function and n is an integral number.
Given,
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0 \to (1)$
Now, we can rewrite the equation (1) as
$
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) - \sqrt 3 (2\cos \theta \sin \theta ) = 0 \\
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) = \sqrt 3 (2\cos \theta \sin \theta ) \to (2) \\
$
We know that $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $ and $\sin 2\theta = 2\sin \theta \cos \theta $. Substituting in equation (2), we get
$
\Rightarrow 3\cos 2\theta = \sqrt 3 \sin 2\theta \\
\Rightarrow \dfrac{3}{{\sqrt 3 }} = \dfrac{{\sin 2\theta }}{{\cos 2\theta }} \\
\Rightarrow \tan 2\theta = \sqrt 3 \\
$
Now, let us write the value of $\sqrt 3 $ in terms of $\tan $ i.e.., $\tan (\dfrac{\pi }{3}) = \sqrt 3 $, Substituting in the above equation, we get
$
\Rightarrow \tan 2\theta = \tan (\dfrac{\pi }{3}) \\
\Rightarrow 2\theta = n\pi + \dfrac{\pi }{3} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} + \dfrac{\pi }{6} \\
$
Hence, the value of $'\theta '$ satisfying the given equation is $\dfrac{{n\pi }}{2} + \dfrac{\pi }{6}$, where n is an integer.
Note: Here, we have added $'n\pi '$ to the $\dfrac{\pi }{3}$ after cancelling the tan on the both sides as $'\pi '$ is the period of the tan function and n is an integral number.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

