
Solve the given equation $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$, $\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$
Answer
619.5k+ views
Hint – Using the given equations in the question we transform one equation such that the variable x is in terms of y. Then substitute y in the other equation. Then solve for the value of y and substitute for x.
Complete step-by-step answer:
Given: $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$ --- (1)
$\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$ ---- (2)
Rewriting (1),
$
\dfrac{{{\text{3x}}}}{2} = - 2 + \dfrac{{{\text{5y}}}}{3} \\
\Rightarrow \dfrac{{{\text{3x}}}}{2} = - \dfrac{{{\text{ - 6 + 5y}}}}{3} \\
\Rightarrow {\text{3x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{3} \\
\Rightarrow {\text{x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{{\text{9}}}{\text{ - - - - - - - - }}\left( 3 \right) \\
$
Substituting (3) in (2)
$
\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9} \times \dfrac{1}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{{27}} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 20{\text{y + 27y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{9} = 13 \\
\Rightarrow \left( { - 24 + 47{\text{y}}} \right) = 9 \times 13 = 117 \\
\Rightarrow 47{\text{y = 117 + 24}} \\
\Rightarrow {\text{47y = 141}} \\
\Rightarrow {\text{y = 3}} \\
$
Substitute value of y in (3) to find value of x
x = $\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9}$
$
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 10 \times 3} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 30} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{18}}{9} \\
\Rightarrow {\text{x = 2}} \\
$
Hence, (x, y) = (2, 3)
Note – This is a question which is of the type in which there are 2 equations and 2 variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Complete step-by-step answer:
Given: $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$ --- (1)
$\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$ ---- (2)
Rewriting (1),
$
\dfrac{{{\text{3x}}}}{2} = - 2 + \dfrac{{{\text{5y}}}}{3} \\
\Rightarrow \dfrac{{{\text{3x}}}}{2} = - \dfrac{{{\text{ - 6 + 5y}}}}{3} \\
\Rightarrow {\text{3x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{3} \\
\Rightarrow {\text{x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{{\text{9}}}{\text{ - - - - - - - - }}\left( 3 \right) \\
$
Substituting (3) in (2)
$
\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9} \times \dfrac{1}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{{27}} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 20{\text{y + 27y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{9} = 13 \\
\Rightarrow \left( { - 24 + 47{\text{y}}} \right) = 9 \times 13 = 117 \\
\Rightarrow 47{\text{y = 117 + 24}} \\
\Rightarrow {\text{47y = 141}} \\
\Rightarrow {\text{y = 3}} \\
$
Substitute value of y in (3) to find value of x
x = $\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9}$
$
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 10 \times 3} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 30} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{18}}{9} \\
\Rightarrow {\text{x = 2}} \\
$
Hence, (x, y) = (2, 3)
Note – This is a question which is of the type in which there are 2 equations and 2 variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

