Answer
Verified
385.5k+ views
Hint:The given question is to solve for the limit function, here we have to use the properties of limit in order to get the solution. And here the greatest integer function is also used according to which the value of the decimal number is the first integer number behind it on the number line. For example, the value of 0.6 in the greatest integer function will be zero.
Formulae Used:
\[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]
Complete step-by-step solution:
Here to solve the given question we need to use the properties of limit, in which we know that when putting the value of limit the term is defined then directly we can have the answer for the limit function, and the terms which give in any indeterminate values then we have to use some more properties then, here we have:
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] + \mathop {\lim }\limits_{x \to 0} {x^x} \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin x}}{x}}}} \right] + \mathop {\lim }\limits_{x \to 0} \left( {{0^0}} \right) \\
\Rightarrow \left[ {\dfrac{1}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}}}} \right] + 1 = \left[ {\dfrac{1}{1}} \right] + 1 = 2\,(\because [1] = 1) \\
\]
Here we got the value of the expression as two.
Note:Here in the given question we use the properties of the limit in order to solve for the value of the function, here we already knew that \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]reciprocating it and bringing it in the form of \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] = 1\], also we must know that the outcome of any number power to 0 is equal to 1, hence addition of both of these is 2.
Formulae Used:
\[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]
Complete step-by-step solution:
Here to solve the given question we need to use the properties of limit, in which we know that when putting the value of limit the term is defined then directly we can have the answer for the limit function, and the terms which give in any indeterminate values then we have to use some more properties then, here we have:
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] + \mathop {\lim }\limits_{x \to 0} {x^x} \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin x}}{x}}}} \right] + \mathop {\lim }\limits_{x \to 0} \left( {{0^0}} \right) \\
\Rightarrow \left[ {\dfrac{1}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}}}} \right] + 1 = \left[ {\dfrac{1}{1}} \right] + 1 = 2\,(\because [1] = 1) \\
\]
Here we got the value of the expression as two.
Note:Here in the given question we use the properties of the limit in order to solve for the value of the function, here we already knew that \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]reciprocating it and bringing it in the form of \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] = 1\], also we must know that the outcome of any number power to 0 is equal to 1, hence addition of both of these is 2.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE