
Solve the given expression, the given expression is:
\[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] + {x^x}\]where [.] is the greatest integer function?
A. 1
B. 2
C. 0
D. -1
Answer
507.6k+ views
Hint:The given question is to solve for the limit function, here we have to use the properties of limit in order to get the solution. And here the greatest integer function is also used according to which the value of the decimal number is the first integer number behind it on the number line. For example, the value of 0.6 in the greatest integer function will be zero.
Formulae Used:
\[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]
Complete step-by-step solution:
Here to solve the given question we need to use the properties of limit, in which we know that when putting the value of limit the term is defined then directly we can have the answer for the limit function, and the terms which give in any indeterminate values then we have to use some more properties then, here we have:
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] + \mathop {\lim }\limits_{x \to 0} {x^x} \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin x}}{x}}}} \right] + \mathop {\lim }\limits_{x \to 0} \left( {{0^0}} \right) \\
\Rightarrow \left[ {\dfrac{1}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}}}} \right] + 1 = \left[ {\dfrac{1}{1}} \right] + 1 = 2\,(\because [1] = 1) \\
\]
Here we got the value of the expression as two.
Note:Here in the given question we use the properties of the limit in order to solve for the value of the function, here we already knew that \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]reciprocating it and bringing it in the form of \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] = 1\], also we must know that the outcome of any number power to 0 is equal to 1, hence addition of both of these is 2.
Formulae Used:
\[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]
Complete step-by-step solution:
Here to solve the given question we need to use the properties of limit, in which we know that when putting the value of limit the term is defined then directly we can have the answer for the limit function, and the terms which give in any indeterminate values then we have to use some more properties then, here we have:
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] + \mathop {\lim }\limits_{x \to 0} {x^x} \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin x}}{x}}}} \right] + \mathop {\lim }\limits_{x \to 0} \left( {{0^0}} \right) \\
\Rightarrow \left[ {\dfrac{1}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}}}} \right] + 1 = \left[ {\dfrac{1}{1}} \right] + 1 = 2\,(\because [1] = 1) \\
\]
Here we got the value of the expression as two.
Note:Here in the given question we use the properties of the limit in order to solve for the value of the function, here we already knew that \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right] = 1\]reciprocating it and bringing it in the form of \[\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{x}{{\sin x}}} \right] = 1\], also we must know that the outcome of any number power to 0 is equal to 1, hence addition of both of these is 2.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

