Answer
Verified
499.5k+ views
Hint- We need to solve the given problem using basic formulae of logarithms.
Given logarithmic equation is ${\log _x}\left( {3{x^2} + 10x} \right) = 3$
$ \Rightarrow 3{x^2} + 10x = {x^3}$ $\left[ {\because {{\log }_a}b = x \Leftrightarrow b = {a^x}} \right]$
Simplifying the above equation, we get
$ \Rightarrow {x^3} - 3{x^2} - 10x = 0$
Factorization of the above equation give
$ \Rightarrow {x^3} + 2{x^2} - 5{x^2} - 10x = 0$
$ \Rightarrow ({x^2} - 5x)(x + 2) = 0$
$ \Rightarrow x(x - 5)(x + 2) = 0$
The domain of x is x>0, since x=0 and x=-2 do not lie in the domain of x.
$ \Rightarrow x = 5$ is the only solution of the given equation.
Note:
In the given problem our goal is to find x value. We have x in the base of logarithm and in the logarithmic expression. We used the formula of equivalence in logarithms $\left[ {\because {{\log }_a}b = x \Leftrightarrow b = {a^x}} \right]$ , to take x out from the base. Then we got a polynomial equation of degree 3. We solved for x value. We got three values for x out of those one is negative, one is zero and the remaining one is positive value. Logarithmic bases should be always greater than zero. So the positive value is the required x value.
Given logarithmic equation is ${\log _x}\left( {3{x^2} + 10x} \right) = 3$
$ \Rightarrow 3{x^2} + 10x = {x^3}$ $\left[ {\because {{\log }_a}b = x \Leftrightarrow b = {a^x}} \right]$
Simplifying the above equation, we get
$ \Rightarrow {x^3} - 3{x^2} - 10x = 0$
Factorization of the above equation give
$ \Rightarrow {x^3} + 2{x^2} - 5{x^2} - 10x = 0$
$ \Rightarrow ({x^2} - 5x)(x + 2) = 0$
$ \Rightarrow x(x - 5)(x + 2) = 0$
The domain of x is x>0, since x=0 and x=-2 do not lie in the domain of x.
$ \Rightarrow x = 5$ is the only solution of the given equation.
Note:
In the given problem our goal is to find x value. We have x in the base of logarithm and in the logarithmic expression. We used the formula of equivalence in logarithms $\left[ {\because {{\log }_a}b = x \Leftrightarrow b = {a^x}} \right]$ , to take x out from the base. Then we got a polynomial equation of degree 3. We solved for x value. We got three values for x out of those one is negative, one is zero and the remaining one is positive value. Logarithmic bases should be always greater than zero. So the positive value is the required x value.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE