Answer
Verified
488.7k+ views
Hint: In this question we will use row and column transformation arithmetic operations to simplify the matrix and after simplification we will calculate the determinant and after further simplification we will get our solution.
Given that:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Taking L.H.S, we will proceed further
\[ = \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right)\]
We will apply arithmetic operation on row second
$ro{w_2} \to ro{w_2} - ro{w_3}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
x&x&{x + y}
\end{array}} \right) \\
\]
Now, we will do arithmetic operation third row
$ro{w_3} \to ro{w_3} - ro{w_1}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{ - y}&0&y
\end{array}} \right) \\
\]
After simplification we will try to find out its determinant using first column
$
= (x + y)\left| {\begin{array}{*{20}{c}}
y&{ - y} \\
0&y
\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}
x&x \\
0&y
\end{array}} \right| - y\left| {\begin{array}{*{20}{c}}
x&x \\
y&{ - y}
\end{array}} \right| \\
= (x + y)({y^2}) - y( - xy - yx) \\
= x{y^2} + {y^3} + 2x{y^2} \\
= {y^2}(y + 3x) \\
$
As we know
L.H.S=R.H.S
$
\Rightarrow {y^2}(y + 3x) = 16(3x + y) \\
\\
$
Solving for the value of y, we will get
$
\Rightarrow {y^2} = 16 \\
\Rightarrow y = \pm 4 \\
$
Hence, the value of $y = \pm 4$
Note: This problem is a combination of matrix and determinant. This problem can be directly solved by calculating the determinant of the given matrix and then comparing and simplifying but it takes a lot of time. It becomes simple to calculate the determinant when the matrix is reduced using arithmetic operations and one or more columns or rows are zero.
Given that:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Taking L.H.S, we will proceed further
\[ = \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right)\]
We will apply arithmetic operation on row second
$ro{w_2} \to ro{w_2} - ro{w_3}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
x&x&{x + y}
\end{array}} \right) \\
\]
Now, we will do arithmetic operation third row
$ro{w_3} \to ro{w_3} - ro{w_1}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{ - y}&0&y
\end{array}} \right) \\
\]
After simplification we will try to find out its determinant using first column
$
= (x + y)\left| {\begin{array}{*{20}{c}}
y&{ - y} \\
0&y
\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}
x&x \\
0&y
\end{array}} \right| - y\left| {\begin{array}{*{20}{c}}
x&x \\
y&{ - y}
\end{array}} \right| \\
= (x + y)({y^2}) - y( - xy - yx) \\
= x{y^2} + {y^3} + 2x{y^2} \\
= {y^2}(y + 3x) \\
$
As we know
L.H.S=R.H.S
$
\Rightarrow {y^2}(y + 3x) = 16(3x + y) \\
\\
$
Solving for the value of y, we will get
$
\Rightarrow {y^2} = 16 \\
\Rightarrow y = \pm 4 \\
$
Hence, the value of $y = \pm 4$
Note: This problem is a combination of matrix and determinant. This problem can be directly solved by calculating the determinant of the given matrix and then comparing and simplifying but it takes a lot of time. It becomes simple to calculate the determinant when the matrix is reduced using arithmetic operations and one or more columns or rows are zero.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE