Answer
Verified
499.2k+ views
Hint: Here we have given multiple angles of \[A\]. So, first we have to convert the R.H.S. into degrees or radians. To do so we have to convert R.H.S. in terms sine angles. By doing this we can easily find out the multiple angles of \[A\].
Given \[2\sin 3A = 1\]
Dividing both sides with \[2\], we get
\[ \Rightarrow \sin 3A = \dfrac{1}{2}\]
We know that \[\sin {30^0} = \dfrac{1}{2}\]
By substituting the value of \[\dfrac{1}{2}\], we get
\[ \Rightarrow \sin 3A = \sin {30^0}\]
By cancelling sin on both sides, we have
\[
\Rightarrow 3A = {30^0} \\
\therefore A = \dfrac{\pi }{{18}} \\
\]
The sine function is positive in the first and the second quadrants. To Find the second solution, subtract the reference angle from \[\pi \] to find the solution in the second quadrant.
i.e., \[\pi - \dfrac{\pi }{6} = \dfrac{{5\pi }}{6}\]
\[\therefore A = \dfrac{{5\pi }}{{18}}\]
The period of the \[\sin 3A\] function is \[\dfrac{{2\pi }}{3}\]. So, values repeat after every \[\dfrac{{2\pi }}{3}\] radians in both the directions.
Thus, \[A = \left\{ {\dfrac{{2\pi n}}{3} + \dfrac{\pi }{{18}},\dfrac{{2\pi n}}{3} + \dfrac{{5\pi }}{{18}}} \right\}\] for any integer \[n\].
Note: In this problem we converted \[\dfrac{1}{2}\] in terms of sine angle because the L.H.S. is in sine function. Always remember to write all the possible angles by time period method. Do not forget to change the multiple angles of the functions.
Given \[2\sin 3A = 1\]
Dividing both sides with \[2\], we get
\[ \Rightarrow \sin 3A = \dfrac{1}{2}\]
We know that \[\sin {30^0} = \dfrac{1}{2}\]
By substituting the value of \[\dfrac{1}{2}\], we get
\[ \Rightarrow \sin 3A = \sin {30^0}\]
By cancelling sin on both sides, we have
\[
\Rightarrow 3A = {30^0} \\
\therefore A = \dfrac{\pi }{{18}} \\
\]
The sine function is positive in the first and the second quadrants. To Find the second solution, subtract the reference angle from \[\pi \] to find the solution in the second quadrant.
i.e., \[\pi - \dfrac{\pi }{6} = \dfrac{{5\pi }}{6}\]
\[\therefore A = \dfrac{{5\pi }}{{18}}\]
The period of the \[\sin 3A\] function is \[\dfrac{{2\pi }}{3}\]. So, values repeat after every \[\dfrac{{2\pi }}{3}\] radians in both the directions.
Thus, \[A = \left\{ {\dfrac{{2\pi n}}{3} + \dfrac{\pi }{{18}},\dfrac{{2\pi n}}{3} + \dfrac{{5\pi }}{{18}}} \right\}\] for any integer \[n\].
Note: In this problem we converted \[\dfrac{1}{2}\] in terms of sine angle because the L.H.S. is in sine function. Always remember to write all the possible angles by time period method. Do not forget to change the multiple angles of the functions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE