Answer
Verified
429.9k+ views
Hint: An inequality compares two values, showing if one is less than, greater than, or simply not equal to another value. Here we need to solve for ‘x’ which is a variable. Solving the given inequality is very like solving equations and we do most of the same thing but we must pay attention to the direction of inequality\[( \leqslant , > )\]. We have two linear inequalities. We can solve this.
Complete step-by-step solution:
Given, \[4x - 2 < 6\]
We add 2 on both sides and we know that the inequality direction doesn’t change,
\[
4x - 2 + 2 < 6 + 2 \\
4x < 8 \\
\]
We divide 4 on both sides we have,
\[
x < \dfrac{8}{4} \\
x < 2 \\
\]
Thus the solution of \[4x - 2 < 6\] is \[x < 2\]. The interval form is \[( - \infty ,2)\].
Now take \[3x + 1 > 22\]
Subtract 1 on both sides we have,
\[
3x + 1 - 1 > 22 - 1 \\
3x > 21 \\
\]
Divide by 3 on both sides we have,
\[
x > \dfrac{{21}}{3} \\
x > 7 \\
\]
Thus the solution of \[3x + 1 > 22\] is \[x > 7\]. The interval form is \[(7,\infty )\].
Note: We take value of ‘x’ in \[( - \infty ,2)\] and put it in \[4x - 2 < 6\]
Let’s put \[x = 0\] in \[4x - 2 < 6\]
\[ 4(0) - 2 < 6 \\
- 2 < 6 \\
\]
Which is correct. We check for the second inequality in the same way.
We know that \[a \ne b\] says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Complete step-by-step solution:
Given, \[4x - 2 < 6\]
We add 2 on both sides and we know that the inequality direction doesn’t change,
\[
4x - 2 + 2 < 6 + 2 \\
4x < 8 \\
\]
We divide 4 on both sides we have,
\[
x < \dfrac{8}{4} \\
x < 2 \\
\]
Thus the solution of \[4x - 2 < 6\] is \[x < 2\]. The interval form is \[( - \infty ,2)\].
Now take \[3x + 1 > 22\]
Subtract 1 on both sides we have,
\[
3x + 1 - 1 > 22 - 1 \\
3x > 21 \\
\]
Divide by 3 on both sides we have,
\[
x > \dfrac{{21}}{3} \\
x > 7 \\
\]
Thus the solution of \[3x + 1 > 22\] is \[x > 7\]. The interval form is \[(7,\infty )\].
Note: We take value of ‘x’ in \[( - \infty ,2)\] and put it in \[4x - 2 < 6\]
Let’s put \[x = 0\] in \[4x - 2 < 6\]
\[ 4(0) - 2 < 6 \\
- 2 < 6 \\
\]
Which is correct. We check for the second inequality in the same way.
We know that \[a \ne b\] says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE