Answer
Verified
429.9k+ views
Hint: To solve the system of equations in two variables, we need to follow the steps given below in the same order:
Step 1: choose one of the equations to find the relationship between the two variables. This can be done by taking one of the variables to the other side of the equation.
Step 2: substitute this relationship in the other equation to get an equation in one variable.
Step 3: solve this equation to find the solution value of the variable.
Step 4: substitute this value in any of the equations to find the value of the other variable.
Complete step by step solution:
We are given the two equations \[11x+15y+23=0\] and \[7x-2y-20=0\]. We know the steps required to solve a system of equations in two variables. Let’s take the first equation, we get
\[\Rightarrow 11x+15y+23=0\]
Subtracting \[15y\] from both sides of equation, we get
\[\Rightarrow 11x+23=-15y\]
Dividing both sides by \[-15\] and flipping the sides, we get
\[\Rightarrow y=\dfrac{11x+23}{-15}\]
Substituting this in the equation \[7x-2y-20=0\], we get
\[\Rightarrow 7x-2\left( \dfrac{11x+23}{-15} \right)-20=0\]
Simplifying the above equation, we get
\[\begin{align}
& \Rightarrow 105x+22x+46-300=0 \\
& \Rightarrow 127x-254=0 \\
\end{align}\]
Solving the above equation, we get
\[\Rightarrow x=2\]
Substituting this value in the relationship between variables to find the value of y, we get
\[\Rightarrow y=\dfrac{11(2)+23}{-15}=\dfrac{45}{-15}=-3\]
Hence, the solution values for the system of equations are \[x=2\And y=-3\].
Note:
To solve any system of equations having two variables, we need to follow the given steps. Unlike this question, even if the degrees of the equations are different. It should be noted that we must check that both functions are defined on that value or not.
Step 1: choose one of the equations to find the relationship between the two variables. This can be done by taking one of the variables to the other side of the equation.
Step 2: substitute this relationship in the other equation to get an equation in one variable.
Step 3: solve this equation to find the solution value of the variable.
Step 4: substitute this value in any of the equations to find the value of the other variable.
Complete step by step solution:
We are given the two equations \[11x+15y+23=0\] and \[7x-2y-20=0\]. We know the steps required to solve a system of equations in two variables. Let’s take the first equation, we get
\[\Rightarrow 11x+15y+23=0\]
Subtracting \[15y\] from both sides of equation, we get
\[\Rightarrow 11x+23=-15y\]
Dividing both sides by \[-15\] and flipping the sides, we get
\[\Rightarrow y=\dfrac{11x+23}{-15}\]
Substituting this in the equation \[7x-2y-20=0\], we get
\[\Rightarrow 7x-2\left( \dfrac{11x+23}{-15} \right)-20=0\]
Simplifying the above equation, we get
\[\begin{align}
& \Rightarrow 105x+22x+46-300=0 \\
& \Rightarrow 127x-254=0 \\
\end{align}\]
Solving the above equation, we get
\[\Rightarrow x=2\]
Substituting this value in the relationship between variables to find the value of y, we get
\[\Rightarrow y=\dfrac{11(2)+23}{-15}=\dfrac{45}{-15}=-3\]
Hence, the solution values for the system of equations are \[x=2\And y=-3\].
Note:
To solve any system of equations having two variables, we need to follow the given steps. Unlike this question, even if the degrees of the equations are different. It should be noted that we must check that both functions are defined on that value or not.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE