Answer
Verified
497.1k+ views
Hint-To solve this question we need to understand how to solve the integrals by the method of substitution and also the properties of logarithm. Then we need to find the correct answer among given examples.
Complete step-by-step answer:
According to Question take ${\text{I = }}\int {{{\text{x}}^x}{\text{ log}}\left( {{\text{ex}}} \right)dx} $
Now using the product rule of log
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {{\text{log e + log x}}} \right)dx} $
Put the value$\log {\text{e = 1}}$in above equation
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {1 + {\text{log x}}} \right)dx} $ …. (1)
Let ${\text{p = }}{{\text{x}}^x}$ …. (2)
Now, take log on both sides
${\text{log p = x log x}}$
Now differentiate this equation with respect to x
$
\dfrac{1}{{\text{p}}}\dfrac{{dp}}{{dx}} = {\text{log x + }}\dfrac{{\text{x}}}{{\text{x}}} \\
\dfrac{{dp}}{{dx}} = {\text{p}}\left( {1 + {\text{ log x}}} \right) \\
dp = {\text{p}}\left( {1 + {\text{log x}}} \right)dx \\
$
Now from equation (2), we get
$dp = {{\text{x}}^{\text{x}}}\left( {{\text{1 + log x}}} \right)dx$
Equating this equation with equation (1)
$
{\text{I = }}\int {dp} \\
{\text{I = p + c}} \\
$
From equation (2)
${\text{I = }}{{\text{x}}^{{\text{x }}}}{\text{ + c}}$ , where c is a constant.
Note-In these types of questions we need to apply the product rule of log and solve the question by analysing the options and solving Integration by Substitution.
Product rule of log is ${\log _a}\left( {{\text{xy}}} \right) = {\log _a}{\text{x + lo}}{{\text{g}}_a}{\text{y}}$
Integration by Substitution is a method to solve integrals by setting them up in a special specific way. It is also called ‘u-Substitution’ or ‘The Reverse Chain Rule’.
Complete step-by-step answer:
According to Question take ${\text{I = }}\int {{{\text{x}}^x}{\text{ log}}\left( {{\text{ex}}} \right)dx} $
Now using the product rule of log
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {{\text{log e + log x}}} \right)dx} $
Put the value$\log {\text{e = 1}}$in above equation
${\text{I = }}\int {{{\text{x}}^{\text{x}}}\left( {1 + {\text{log x}}} \right)dx} $ …. (1)
Let ${\text{p = }}{{\text{x}}^x}$ …. (2)
Now, take log on both sides
${\text{log p = x log x}}$
Now differentiate this equation with respect to x
$
\dfrac{1}{{\text{p}}}\dfrac{{dp}}{{dx}} = {\text{log x + }}\dfrac{{\text{x}}}{{\text{x}}} \\
\dfrac{{dp}}{{dx}} = {\text{p}}\left( {1 + {\text{ log x}}} \right) \\
dp = {\text{p}}\left( {1 + {\text{log x}}} \right)dx \\
$
Now from equation (2), we get
$dp = {{\text{x}}^{\text{x}}}\left( {{\text{1 + log x}}} \right)dx$
Equating this equation with equation (1)
$
{\text{I = }}\int {dp} \\
{\text{I = p + c}} \\
$
From equation (2)
${\text{I = }}{{\text{x}}^{{\text{x }}}}{\text{ + c}}$ , where c is a constant.
Note-In these types of questions we need to apply the product rule of log and solve the question by analysing the options and solving Integration by Substitution.
Product rule of log is ${\log _a}\left( {{\text{xy}}} \right) = {\log _a}{\text{x + lo}}{{\text{g}}_a}{\text{y}}$
Integration by Substitution is a method to solve integrals by setting them up in a special specific way. It is also called ‘u-Substitution’ or ‘The Reverse Chain Rule’.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE