Answer
Verified
498.6k+ views
Hint:- Try to make complete square from given equation by using the transformation of the quadratic equation from \[{x^2} + {\text{ }}2ax{\text{ }} + {\text{ }}{a^2} = {\text{ }}0\;\] to \[{\left( {x{\text{ }} + {\text{ }}a} \right)^2}\].
As we know that any quadratic equation written in the form,
\[{x^2} + {\text{ }}2ax{\text{ }} + {\text{ }}{a^2} = {\text{ }}0\;\] can also be written as \[{\left( {x{\text{ }} + {\text{ }}a} \right)^2}\]. (statement 1)
\[{x^2} + {\text{ }}2ax{\text{ }} + {\text{ }}{a^2} = {\text{ }}0\;\] (Eq 1)
So, we will write the given equation in the form of equation 1.
So, comparing equation 1 and the given equation. We get,
\[2a{\text{ = 6}}\]
So, \[a{\text{ = 3}}\].
As we can see that there is no term of \[{a^2}\] (i.e. \[{3^2}\]) in the given equation.
So, adding \[{3^2}\] to both sides of the given equation. We will get,
\[\;{x^{2\;}} + {\text{ }}6x{\text{ }} + {\text{ }}{3^{2\;}}-{\text{ }}7{\text{ }} = {\text{ }}{3^2}\]
Now, using statement 1 above equation can also be written as,
\[{\left( {x{\text{ }} + {\text{ }}3} \right)^{2\;}}-{\text{ }}7{\text{ }} = {\text{ }}9\]
Solving above equation. We get,
\[{\left( {x{\text{ }} + {\text{ }}3} \right)^2} = {\text{ }}16{\text{ }} = {\text{ }}{4^2}\]
Now, subtracting \[{4^2}\] both sides of the above equation. We will get,
\[{\left( {x{\text{ }} + {\text{ }}3} \right)^2}-{\text{ }}{4^2} = {\text{ 0}}\] (Eq 2)
As we know that according that,
\[{a^2}-{\text{ }}{b^2} = {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right)\left( {a{\text{ }} - {\text{ }}b} \right)\] (Eq 3)
So, manipulating equation 2 using formula at equation 3. We will get,
\[
\left( {x{\text{ }} + {\text{ }}3{\text{ }} + {\text{ }}4} \right)\left( {x{\text{ }} + {\text{ }}3{\text{ }}-{\text{ }}4} \right){\text{ }} = {\text{ }}0 \\
\left( {x{\text{ }} + {\text{ }}7} \right)\left( {x{\text{ }}-{\text{ }}1} \right){\text{ }} = {\text{ }}0 \\
\]
Using the above equation. We will get,
\[x{\text{ }} + {\text{ }}7{\text{ }} = {\text{ }}0\;\] or \[x{\text{ }}-{\text{ }}1{\text{ }} = {\text{ }}0\]
\[x{\text{ }} = {\text{ }}1,{\text{ }} - 7\]
Hence, the solution of quadratic equation \[{x^{2\;}} + {\text{ }}6x{\text{ }}-{\text{ }}7{\text{ }} = {\text{ }}0\;\] will be \[x{\text{ }} = {\text{ }}1,{\text{ }} - 7\].
Note:- Whenever we came up with this type of problem then to solve the given quadratic equation efficiently. First, we will manipulate the given equation such that it becomes a perfect square. And then we can get the value of x easily from the perfect square. But if the method to solve the equation is not specified in question then we can also use formula of roots of quadratic equation that is, if \[a{x^2} + {\text{ }}bx{\text{ }} + {\text{ }}c\] will be any quadratic equation then its roots will be \[x{\text{ }} = {\text{ }}\dfrac{{ - b{\text{ }} \pm {\text{ }}\sqrt {{b^2}{\text{ }} - {\text{ }}4ac} }}{{2a}}\].
As we know that any quadratic equation written in the form,
\[{x^2} + {\text{ }}2ax{\text{ }} + {\text{ }}{a^2} = {\text{ }}0\;\] can also be written as \[{\left( {x{\text{ }} + {\text{ }}a} \right)^2}\]. (statement 1)
\[{x^2} + {\text{ }}2ax{\text{ }} + {\text{ }}{a^2} = {\text{ }}0\;\] (Eq 1)
So, we will write the given equation in the form of equation 1.
So, comparing equation 1 and the given equation. We get,
\[2a{\text{ = 6}}\]
So, \[a{\text{ = 3}}\].
As we can see that there is no term of \[{a^2}\] (i.e. \[{3^2}\]) in the given equation.
So, adding \[{3^2}\] to both sides of the given equation. We will get,
\[\;{x^{2\;}} + {\text{ }}6x{\text{ }} + {\text{ }}{3^{2\;}}-{\text{ }}7{\text{ }} = {\text{ }}{3^2}\]
Now, using statement 1 above equation can also be written as,
\[{\left( {x{\text{ }} + {\text{ }}3} \right)^{2\;}}-{\text{ }}7{\text{ }} = {\text{ }}9\]
Solving above equation. We get,
\[{\left( {x{\text{ }} + {\text{ }}3} \right)^2} = {\text{ }}16{\text{ }} = {\text{ }}{4^2}\]
Now, subtracting \[{4^2}\] both sides of the above equation. We will get,
\[{\left( {x{\text{ }} + {\text{ }}3} \right)^2}-{\text{ }}{4^2} = {\text{ 0}}\] (Eq 2)
As we know that according that,
\[{a^2}-{\text{ }}{b^2} = {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right)\left( {a{\text{ }} - {\text{ }}b} \right)\] (Eq 3)
So, manipulating equation 2 using formula at equation 3. We will get,
\[
\left( {x{\text{ }} + {\text{ }}3{\text{ }} + {\text{ }}4} \right)\left( {x{\text{ }} + {\text{ }}3{\text{ }}-{\text{ }}4} \right){\text{ }} = {\text{ }}0 \\
\left( {x{\text{ }} + {\text{ }}7} \right)\left( {x{\text{ }}-{\text{ }}1} \right){\text{ }} = {\text{ }}0 \\
\]
Using the above equation. We will get,
\[x{\text{ }} + {\text{ }}7{\text{ }} = {\text{ }}0\;\] or \[x{\text{ }}-{\text{ }}1{\text{ }} = {\text{ }}0\]
\[x{\text{ }} = {\text{ }}1,{\text{ }} - 7\]
Hence, the solution of quadratic equation \[{x^{2\;}} + {\text{ }}6x{\text{ }}-{\text{ }}7{\text{ }} = {\text{ }}0\;\] will be \[x{\text{ }} = {\text{ }}1,{\text{ }} - 7\].
Note:- Whenever we came up with this type of problem then to solve the given quadratic equation efficiently. First, we will manipulate the given equation such that it becomes a perfect square. And then we can get the value of x easily from the perfect square. But if the method to solve the equation is not specified in question then we can also use formula of roots of quadratic equation that is, if \[a{x^2} + {\text{ }}bx{\text{ }} + {\text{ }}c\] will be any quadratic equation then its roots will be \[x{\text{ }} = {\text{ }}\dfrac{{ - b{\text{ }} \pm {\text{ }}\sqrt {{b^2}{\text{ }} - {\text{ }}4ac} }}{{2a}}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE