
How do you solve $ {x^2} - 11x + 28 = 0$ using the quadratic formula $ ?$
Answer
556.2k+ views
Hint: In this question using the quadratic formula. First we take the given equation. We identify the value of $ a,b$ and $ c$ in the quadratic equation. After that Substitute the values $ a ,b$ and $ c$ into the quadratic formula and solve for $ x$ . Now simplify the equation, hence we get the equation.
Use the quadratic formula to find the solutions,
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Pull terms out from under the radical, assuming positive real numbers. Now we find the $ x$ value. First we separate the positive and sign values.
Finally we get $ x$ values.
Complete step-by-step solution:
The given quadratic equation is $ {x^2} - 11x + 28 = 0$ .
Use the quadratic formula to find the solutions,
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Substitute the values $ a = 1,b = - 11$ and $ c = 28$ into the quadratic formula and solve for $ x$
$ \dfrac{{ - ( - 11) \pm \sqrt {{{( - 11)}^2} - 4(1 \times 28)} }}{{2 \times 1}}$
Now simplify the equation, hence we get
$ \dfrac{{11 \pm \sqrt {{{( - 11)}^2} - 4(1 \times 28)} }}{{2 \times 1}}$
Raise $ - 11$ to the power of $ 2$
$ \Rightarrow$ $ x = \dfrac{{11 \pm \sqrt {121 - 4(1 \times 28)} }}{{2 \times 1}}$
Multiply $ 28$ by $ 1$
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt {121 - 4 \times 28} }}{{2 \times 1}}\]
Multiply $ - 4$ by $ 28$
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt {121 - 112} }}{{2 \times 1}}\]
Subtract $ 112$ from $ 121 $
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt 9 }}{{2 \times 1}}\]
Rewrite $ 9$ as $ {3^2}$
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt {{3^2}} }}{{2 \times 1}}\]
Pull terms out from under the radical, assuming positive real numbers.
$ \Rightarrow$ \[x = \dfrac{{11 \pm 3}}{{2 \times 1}}\]
Multiply $ 2$ by$ 1$
$ \Rightarrow$ \[x = \dfrac{{11 \pm 3}}{2}\]
Now we find the $ x$ value. First we separate the positive and sign values,
Let,
$ \Rightarrow$ $ x = \dfrac{{11 + 3}}{2}$
Add $ 11$ by $ 3$
$ \Rightarrow$ $ x = \dfrac{{14}}{2}$
Divide $ 14$ by $ 2$
$ \Rightarrow$ $ x = 7$
Let, $ x = \dfrac{{11 - 3}}{2}$
Subtract $ 3$ from $ 11$
$ \Rightarrow$ $ x = \dfrac{8}{2} $
Divide $ 8$ by $ 2$
$ \Rightarrow$ $ x = 4$
The given equation solution is $ 7$ and $ 4$
Therefore the values of x are 7 and 4.
Note: The formula for finding the roots of the quadratic equation $ a{x^2} + bx + c = 0$ is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
The formula for finding roots of a quadratic equation was known to ancient Babylonians, though not in a form as we derived.
They found the roots by creating the steps as a verse, which is a common practice at their times. Babylonians used quadratic equations for deciding to choose the dimensions of their land for agriculture.
Use the quadratic formula to find the solutions,
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Pull terms out from under the radical, assuming positive real numbers. Now we find the $ x$ value. First we separate the positive and sign values.
Finally we get $ x$ values.
Complete step-by-step solution:
The given quadratic equation is $ {x^2} - 11x + 28 = 0$ .
Use the quadratic formula to find the solutions,
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Substitute the values $ a = 1,b = - 11$ and $ c = 28$ into the quadratic formula and solve for $ x$
$ \dfrac{{ - ( - 11) \pm \sqrt {{{( - 11)}^2} - 4(1 \times 28)} }}{{2 \times 1}}$
Now simplify the equation, hence we get
$ \dfrac{{11 \pm \sqrt {{{( - 11)}^2} - 4(1 \times 28)} }}{{2 \times 1}}$
Raise $ - 11$ to the power of $ 2$
$ \Rightarrow$ $ x = \dfrac{{11 \pm \sqrt {121 - 4(1 \times 28)} }}{{2 \times 1}}$
Multiply $ 28$ by $ 1$
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt {121 - 4 \times 28} }}{{2 \times 1}}\]
Multiply $ - 4$ by $ 28$
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt {121 - 112} }}{{2 \times 1}}\]
Subtract $ 112$ from $ 121 $
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt 9 }}{{2 \times 1}}\]
Rewrite $ 9$ as $ {3^2}$
$ \Rightarrow$ \[x = \dfrac{{11 \pm \sqrt {{3^2}} }}{{2 \times 1}}\]
Pull terms out from under the radical, assuming positive real numbers.
$ \Rightarrow$ \[x = \dfrac{{11 \pm 3}}{{2 \times 1}}\]
Multiply $ 2$ by$ 1$
$ \Rightarrow$ \[x = \dfrac{{11 \pm 3}}{2}\]
Now we find the $ x$ value. First we separate the positive and sign values,
Let,
$ \Rightarrow$ $ x = \dfrac{{11 + 3}}{2}$
Add $ 11$ by $ 3$
$ \Rightarrow$ $ x = \dfrac{{14}}{2}$
Divide $ 14$ by $ 2$
$ \Rightarrow$ $ x = 7$
Let, $ x = \dfrac{{11 - 3}}{2}$
Subtract $ 3$ from $ 11$
$ \Rightarrow$ $ x = \dfrac{8}{2} $
Divide $ 8$ by $ 2$
$ \Rightarrow$ $ x = 4$
The given equation solution is $ 7$ and $ 4$
Therefore the values of x are 7 and 4.
Note: The formula for finding the roots of the quadratic equation $ a{x^2} + bx + c = 0$ is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
The formula for finding roots of a quadratic equation was known to ancient Babylonians, though not in a form as we derived.
They found the roots by creating the steps as a verse, which is a common practice at their times. Babylonians used quadratic equations for deciding to choose the dimensions of their land for agriculture.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

