
How do you solve $ {{x}^{2}} $ − x − 1 = 0 using the quadratic formula?
Answer
563.1k+ views
Hint:
The quadratic formula states that the solutions to the quadratic equation $ a{{x}^{2}} $ + bx + c = 0 are directly obtained by using the formula: x = $ \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $, where a ≠ 0. What are the values of a, b and c in the given equation?
Complete Step by step Solution:
Comparing the given quadratic equation $ {{x}^{2}} $ − x − 1 = 0 with the general form of the quadratic equations $ a{{x}^{2}} $ + bx + c = 0, we see that a = 1, b = − 1 and c = −1.
Using the formula x = $ \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $ , we get:
x = $ \dfrac{-(-1)\pm \sqrt{{{(-1)}^{2}}-4(1)(-1)}}{2(1)} $
On multiplying and simplifying the terms further, we get:
⇒ x = $ \dfrac{1\pm \sqrt{1+4}}{2} $
⇒ x = $ \dfrac{1\pm \sqrt{5}}{2} $
⇒ x = $ \dfrac{1+\sqrt{5}}{2} $ OR x = $ \dfrac{1-\sqrt{5}}{2} $ , which are the two required solutions.
Note:
The solution to an expression of the form p × q × r = 0 is that at least one of p, q or r must be 0, i.e. p = 0 OR q = 0 OR r = 0.
In order to solve a quadratic equation, we complete two squares of the form $ {{a}^{2}} $ − $ {{b}^{2}} $ = 0 and then factorize as (a + b)(a − b) = 0 and get the solutions as a = −b OR a = b.
The quadratic formula states that the solutions to the quadratic equation $ a{{x}^{2}} $ + bx + c = 0 are directly obtained by using the formula: x = $ \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $, where a ≠ 0. What are the values of a, b and c in the given equation?
Complete Step by step Solution:
Comparing the given quadratic equation $ {{x}^{2}} $ − x − 1 = 0 with the general form of the quadratic equations $ a{{x}^{2}} $ + bx + c = 0, we see that a = 1, b = − 1 and c = −1.
Using the formula x = $ \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $ , we get:
x = $ \dfrac{-(-1)\pm \sqrt{{{(-1)}^{2}}-4(1)(-1)}}{2(1)} $
On multiplying and simplifying the terms further, we get:
⇒ x = $ \dfrac{1\pm \sqrt{1+4}}{2} $
⇒ x = $ \dfrac{1\pm \sqrt{5}}{2} $
⇒ x = $ \dfrac{1+\sqrt{5}}{2} $ OR x = $ \dfrac{1-\sqrt{5}}{2} $ , which are the two required solutions.
Note:
The solution to an expression of the form p × q × r = 0 is that at least one of p, q or r must be 0, i.e. p = 0 OR q = 0 OR r = 0.
In order to solve a quadratic equation, we complete two squares of the form $ {{a}^{2}} $ − $ {{b}^{2}} $ = 0 and then factorize as (a + b)(a − b) = 0 and get the solutions as a = −b OR a = b.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

