Answer
Verified
451.2k+ views
Hint:
Here, we need to find the roots of the given quartic equation. We will find the product of the other roots of the quartic equation. Then, using Descartes’s solution, we will rewrite the quartic equation as a product of two quadratic equations. Finally, we will factorise the two quadratic equations to get the four roots of the given quartic equation.
Formula Used:
We will use the following formulas:
1) The product of all roots of a quartic equation of the form \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] is given by \[\dfrac{e}{a}\].
2) According to Descartes’s solution, we can write a quartic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] as \[{x^4} + b{x^3} + c{x^2} + dx + e = \left( {{x^2} + sx + t} \right)\left( {{x^2} + ux + v} \right)\], which can be further simplified as \[\left( {{x^2} + sx + t} \right)\left( {{x^2} + ux + v} \right) = {x^4} + \left( {s + u} \right){x^3} + \left( {t + v + su} \right){x^2} + \left( {sv + tu} \right)x + tv\]. Here, \[b = s + u\], \[c = t + v + su\], \[d = sv + tu\], and \[e = tv\].
Complete step by step solution:
Let the four roots of the given quartic equation be \[\alpha \], \[\beta \], \[\gamma \], and \[\delta \].
It is given that the product of two roots is 6.
Thus, we can write
\[\alpha \beta = 6\]
Now, the product of all roots of a quartic equation of the form \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] is given by \[\dfrac{e}{a}\].
Comparing the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\] to the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], we get
\[a = 1\] and \[e = 48\]
Thus, we get the product of all roots of the quartic equation as
\[\dfrac{e}{a} = \dfrac{{48}}{1} = 48\]
The roots are \[\alpha \], \[\beta \], \[\gamma \], and \[\delta \].
Therefore, we can write
\[\alpha \beta \gamma \delta = 48\]
Substituting \[\alpha \beta = 6\] in the equation, we get
\[ \Rightarrow 6\gamma \delta = 48\]
Dividing both sides by 6, we get
\[ \Rightarrow \gamma \delta = 8\]
Using Descartes’s solution, we can factorise the quartic equation into two quadratic equations.
Comparing the coefficients of the terms in the equations \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\] and \[{x^4} + \left( {s + u} \right){x^3} + \left( {t + v + su} \right){x^2} + \left( {sv + tu} \right)x + tv\], we get
\[s + u = 1\]
\[sv + tu = - 4\]
\[tv = 48\]
The constant 48 is the product of 8 and 6.
Therefore, substituting \[t = 8\] and \[v = 6\], we get
\[6s + 8u = - 4\]
Multiplying both sides of the equation \[s + u = 1\] by 6, we get
\[\begin{array}{l} \Rightarrow 6\left( {s + u} \right) = 6\left( 1 \right)\\ \Rightarrow 6s + 6u = 6\end{array}\]
Subtracting the equation \[6s + 6u = 6\] from the equation \[6s + 8u = - 4\], we get
\[\begin{array}{l} \Rightarrow 6s + 8u - \left( {6s + 6u} \right) = - 4 - 6\\ \Rightarrow 6s + 8u - 6s - 6u = - 10\end{array}\]
Subtracting the like terms, we get
\[ \Rightarrow 2u = - 10\]
Dividing both sides by 2, we get
\[ \Rightarrow u = - 5\]
Substituting \[u = - 5\] in the equation \[s + u = 1\], we get
\[ \Rightarrow s - 5 = 1\]
Adding 5 on both sides of the equation, we get
\[\begin{array}{l} \Rightarrow s - 5 + 5 = 1 + 5\\ \Rightarrow s = 6\end{array}\]
Substituting \[b = 1\], \[c = - 16\], \[d = - 4\], \[e = 48\], \[s = 6\], \[u = - 5\], \[t = 8\], and \[v = 6\] in the equation \[{x^4} + b{x^3} + c{x^2} + dx + e = \left( {{x^2} + sx + t} \right)\left( {{x^2} + ux + v} \right)\], we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left( {{x^2} + 6x + 8} \right)\left( {{x^2} - 5x + 6} \right)\]
We will factorise the two quadratic equations to find the roots of the quartic equation.
Factoring the quadratic equations using splitting the middle term, we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left( {{x^2} + 4x + 2x + 8} \right)\left( {{x^2} - 3x - 2x + 6} \right)\]
Factoring out the terms, we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left[ {x\left( {x + 4} \right) + 2\left( {x + 4} \right)} \right]\left[ {x\left( {x - 3} \right) - 2\left( {x - 3} \right)} \right]\]
Therefore, we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left( {x + 4} \right)\left( {x + 2} \right)\left( {x - 2} \right)\left( {x - 3} \right)\]
Since \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[ \Rightarrow \left( {x + 4} \right)\left( {x + 2} \right)\left( {x - 2} \right)\left( {x - 3} \right) = 0\]
Therefore, the roots of the quartic equation can be obtained by solving
\[x + 4 = 0\], \[x + 2 = 0\], \[x - 2 = 0\], and \[x - 3 = 0\]
Thus, we get
\[x = - 4,2, - 2,3\]
Thus, the roots of the quartic equation are 2, 3, \[ - 2\], and \[ - 4\].
Note:
We can verify our answer by substituting the roots obtained into the given equation and see if the answer is 0.
Substituting \[x = - 4\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {\left( { - 4} \right)^4} + {\left( { - 4} \right)^3} - 16{\left( { - 4} \right)^2} - 4\left( { - 4} \right) + 48 = 256 - 64 - 16\left( {16} \right) + 16 + 48\\ \Rightarrow {\left( { - 4} \right)^4} + {\left( { - 4} \right)^3} - 16{\left( { - 4} \right)^2} - 4\left( { - 4} \right) + 48 = 256 - 64 - 256 + 16 + 48\\ \Rightarrow {\left( { - 4} \right)^4} + {\left( { - 4} \right)^3} - 16{\left( { - 4} \right)^2} - 4\left( { - 4} \right) + 48 = 0\end{array}\]
Substituting \[x = - 2\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {\left( { - 2} \right)^4} + {\left( { - 2} \right)^3} - 16{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 48 = 16 - 8 - 16\left( 4 \right) + 8 + 48\\ \Rightarrow {\left( { - 2} \right)^4} + {\left( { - 2} \right)^3} - 16{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 48 = 16 - 8 - 64 + 8 + 48\\ \Rightarrow {\left( { - 2} \right)^4} + {\left( { - 2} \right)^3} - 16{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 48 = 0\end{array}\]
Substituting \[x = 2\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {2^4} + {2^3} - 16{\left( 2 \right)^2} - 4\left( 2 \right) + 48 = 16 + 8 - 16\left( 4 \right) - 8 + 48\\ \Rightarrow {2^4} + {2^3} - 16{\left( 2 \right)^2} - 4\left( 2 \right) + 48 = 16 + 8 - 64 - 8 + 48\\ \Rightarrow {2^4} + {2^3} - 16{\left( 2 \right)^2} - 4\left( 2 \right) + 48 = 0\end{array}\]
Substituting \[x = 3\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {3^4} + {3^3} - 16{\left( 3 \right)^2} - 4\left( 3 \right) + 48 = 81 + 27 - 16\left( 9 \right) - 12 + 48\\ \Rightarrow {3^4} + {3^3} - 16{\left( 3 \right)^2} - 4\left( 3 \right) + 48 = 81 + 27 - 144 - 12 + 48\\ \Rightarrow {3^4} + {3^3} - 16{\left( 3 \right)^2} - 4\left( 3 \right) + 48 = 0\end{array}\]
Therefore, we have verified that the roots of the quartic equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\] are 2, 3, \[ - 2\], and \[ - 4\].
The roots whose product is 6 are 2 and 3.
Here, we need to find the roots of the given quartic equation. We will find the product of the other roots of the quartic equation. Then, using Descartes’s solution, we will rewrite the quartic equation as a product of two quadratic equations. Finally, we will factorise the two quadratic equations to get the four roots of the given quartic equation.
Formula Used:
We will use the following formulas:
1) The product of all roots of a quartic equation of the form \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] is given by \[\dfrac{e}{a}\].
2) According to Descartes’s solution, we can write a quartic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] as \[{x^4} + b{x^3} + c{x^2} + dx + e = \left( {{x^2} + sx + t} \right)\left( {{x^2} + ux + v} \right)\], which can be further simplified as \[\left( {{x^2} + sx + t} \right)\left( {{x^2} + ux + v} \right) = {x^4} + \left( {s + u} \right){x^3} + \left( {t + v + su} \right){x^2} + \left( {sv + tu} \right)x + tv\]. Here, \[b = s + u\], \[c = t + v + su\], \[d = sv + tu\], and \[e = tv\].
Complete step by step solution:
Let the four roots of the given quartic equation be \[\alpha \], \[\beta \], \[\gamma \], and \[\delta \].
It is given that the product of two roots is 6.
Thus, we can write
\[\alpha \beta = 6\]
Now, the product of all roots of a quartic equation of the form \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] is given by \[\dfrac{e}{a}\].
Comparing the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\] to the equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\], we get
\[a = 1\] and \[e = 48\]
Thus, we get the product of all roots of the quartic equation as
\[\dfrac{e}{a} = \dfrac{{48}}{1} = 48\]
The roots are \[\alpha \], \[\beta \], \[\gamma \], and \[\delta \].
Therefore, we can write
\[\alpha \beta \gamma \delta = 48\]
Substituting \[\alpha \beta = 6\] in the equation, we get
\[ \Rightarrow 6\gamma \delta = 48\]
Dividing both sides by 6, we get
\[ \Rightarrow \gamma \delta = 8\]
Using Descartes’s solution, we can factorise the quartic equation into two quadratic equations.
Comparing the coefficients of the terms in the equations \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\] and \[{x^4} + \left( {s + u} \right){x^3} + \left( {t + v + su} \right){x^2} + \left( {sv + tu} \right)x + tv\], we get
\[s + u = 1\]
\[sv + tu = - 4\]
\[tv = 48\]
The constant 48 is the product of 8 and 6.
Therefore, substituting \[t = 8\] and \[v = 6\], we get
\[6s + 8u = - 4\]
Multiplying both sides of the equation \[s + u = 1\] by 6, we get
\[\begin{array}{l} \Rightarrow 6\left( {s + u} \right) = 6\left( 1 \right)\\ \Rightarrow 6s + 6u = 6\end{array}\]
Subtracting the equation \[6s + 6u = 6\] from the equation \[6s + 8u = - 4\], we get
\[\begin{array}{l} \Rightarrow 6s + 8u - \left( {6s + 6u} \right) = - 4 - 6\\ \Rightarrow 6s + 8u - 6s - 6u = - 10\end{array}\]
Subtracting the like terms, we get
\[ \Rightarrow 2u = - 10\]
Dividing both sides by 2, we get
\[ \Rightarrow u = - 5\]
Substituting \[u = - 5\] in the equation \[s + u = 1\], we get
\[ \Rightarrow s - 5 = 1\]
Adding 5 on both sides of the equation, we get
\[\begin{array}{l} \Rightarrow s - 5 + 5 = 1 + 5\\ \Rightarrow s = 6\end{array}\]
Substituting \[b = 1\], \[c = - 16\], \[d = - 4\], \[e = 48\], \[s = 6\], \[u = - 5\], \[t = 8\], and \[v = 6\] in the equation \[{x^4} + b{x^3} + c{x^2} + dx + e = \left( {{x^2} + sx + t} \right)\left( {{x^2} + ux + v} \right)\], we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left( {{x^2} + 6x + 8} \right)\left( {{x^2} - 5x + 6} \right)\]
We will factorise the two quadratic equations to find the roots of the quartic equation.
Factoring the quadratic equations using splitting the middle term, we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left( {{x^2} + 4x + 2x + 8} \right)\left( {{x^2} - 3x - 2x + 6} \right)\]
Factoring out the terms, we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left[ {x\left( {x + 4} \right) + 2\left( {x + 4} \right)} \right]\left[ {x\left( {x - 3} \right) - 2\left( {x - 3} \right)} \right]\]
Therefore, we get
\[ \Rightarrow {x^4} + {x^3} - 16{x^2} - 4x + 48 = \left( {x + 4} \right)\left( {x + 2} \right)\left( {x - 2} \right)\left( {x - 3} \right)\]
Since \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[ \Rightarrow \left( {x + 4} \right)\left( {x + 2} \right)\left( {x - 2} \right)\left( {x - 3} \right) = 0\]
Therefore, the roots of the quartic equation can be obtained by solving
\[x + 4 = 0\], \[x + 2 = 0\], \[x - 2 = 0\], and \[x - 3 = 0\]
Thus, we get
\[x = - 4,2, - 2,3\]
Thus, the roots of the quartic equation are 2, 3, \[ - 2\], and \[ - 4\].
Note:
We can verify our answer by substituting the roots obtained into the given equation and see if the answer is 0.
Substituting \[x = - 4\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {\left( { - 4} \right)^4} + {\left( { - 4} \right)^3} - 16{\left( { - 4} \right)^2} - 4\left( { - 4} \right) + 48 = 256 - 64 - 16\left( {16} \right) + 16 + 48\\ \Rightarrow {\left( { - 4} \right)^4} + {\left( { - 4} \right)^3} - 16{\left( { - 4} \right)^2} - 4\left( { - 4} \right) + 48 = 256 - 64 - 256 + 16 + 48\\ \Rightarrow {\left( { - 4} \right)^4} + {\left( { - 4} \right)^3} - 16{\left( { - 4} \right)^2} - 4\left( { - 4} \right) + 48 = 0\end{array}\]
Substituting \[x = - 2\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {\left( { - 2} \right)^4} + {\left( { - 2} \right)^3} - 16{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 48 = 16 - 8 - 16\left( 4 \right) + 8 + 48\\ \Rightarrow {\left( { - 2} \right)^4} + {\left( { - 2} \right)^3} - 16{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 48 = 16 - 8 - 64 + 8 + 48\\ \Rightarrow {\left( { - 2} \right)^4} + {\left( { - 2} \right)^3} - 16{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 48 = 0\end{array}\]
Substituting \[x = 2\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {2^4} + {2^3} - 16{\left( 2 \right)^2} - 4\left( 2 \right) + 48 = 16 + 8 - 16\left( 4 \right) - 8 + 48\\ \Rightarrow {2^4} + {2^3} - 16{\left( 2 \right)^2} - 4\left( 2 \right) + 48 = 16 + 8 - 64 - 8 + 48\\ \Rightarrow {2^4} + {2^3} - 16{\left( 2 \right)^2} - 4\left( 2 \right) + 48 = 0\end{array}\]
Substituting \[x = 3\] in the equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\], we get
\[\begin{array}{l} \Rightarrow {3^4} + {3^3} - 16{\left( 3 \right)^2} - 4\left( 3 \right) + 48 = 81 + 27 - 16\left( 9 \right) - 12 + 48\\ \Rightarrow {3^4} + {3^3} - 16{\left( 3 \right)^2} - 4\left( 3 \right) + 48 = 81 + 27 - 144 - 12 + 48\\ \Rightarrow {3^4} + {3^3} - 16{\left( 3 \right)^2} - 4\left( 3 \right) + 48 = 0\end{array}\]
Therefore, we have verified that the roots of the quartic equation \[{x^4} + {x^3} - 16{x^2} - 4x + 48 = 0\] are 2, 3, \[ - 2\], and \[ - 4\].
The roots whose product is 6 are 2 and 3.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE