Answer
Verified
432k+ views
Hint: In this problem, we have to solve the given differential equation and find the value of y. We can use the first order linear ordinary differential equation and we can derive an integrating factor and we can multiply the integrating factor to the differential equation. We can also solve this problem, by taking one term to the right-hand side and integrating on both sides and simply to solve for y.
Complete step by step answer:
We know that the given differential equation is,
\[y'+3y=0\]
We can write the term y’ as \[\dfrac{dy}{dx}\], we get
\[\dfrac{dy}{dx}+3y=0\]
Now we can add -3y on both sides, we get
\[\Rightarrow \dfrac{dy}{dx}=-3y\]
Now we can rearrange the above step by separating the variables, that is treating \[\dfrac{dy}{dx}\] as division and getting the y terms on one side and the x terms on the other side, we get
\[\Rightarrow \dfrac{dy}{y}=-3dx\]
We can now integrate on both the sides, we get
\[\begin{align}
& \Rightarrow \int{\dfrac{dy}{y}}=\int{-3dx} \\
& \Rightarrow \ln \left| y \right|=-3x+C\text{ }\because \int{\dfrac{1}{y}dy=\ln \left| y \right|},\int{\left( -3 \right)dx}=-3x \\
\end{align}\]
Now we can use the initial condition \[y\left( 0 \right)=4\], in the above step, we get
\[\begin{align}
& \Rightarrow \ln \left| 4 \right|=-3\left( 0 \right)+C \\
& \Rightarrow C=\ln \left| 4 \right| \\
\end{align}\]
We can substitute this C value, we get
\[\Rightarrow \ln \left| y \right|=-3x+\ln \left( 4 \right)\]
Now we can take exponent on both the sides, we get
\[\Rightarrow {{e}^{\ln \left| y\right|}}={{e}^{-3x+\ln \left| 4 \right|}}\]
Now we can use the exponent rule, we get
\[\begin{align}
& \Rightarrow y={{e}^{-3x}}.{{e}^{\ln \left| 4 \right|}} \\
& \Rightarrow y={{e}^{-3x}}.4\text{ }\,\,\, \because {{\text{e}}^{\ln \left| 4 \right|}}=4 \\
\end{align}\]
Therefore, the value is \[y=4{{e}^{-3x}}\].
Note: Students should know some basic integration formulas and rules to solve these types of problems. We should also know exponent rules to simplify this problem. We can also use the first order linear ordinary differential equation and we can derive an integrating factor and we can multiply the integrating factor to the differential equation to solve this problem.
Complete step by step answer:
We know that the given differential equation is,
\[y'+3y=0\]
We can write the term y’ as \[\dfrac{dy}{dx}\], we get
\[\dfrac{dy}{dx}+3y=0\]
Now we can add -3y on both sides, we get
\[\Rightarrow \dfrac{dy}{dx}=-3y\]
Now we can rearrange the above step by separating the variables, that is treating \[\dfrac{dy}{dx}\] as division and getting the y terms on one side and the x terms on the other side, we get
\[\Rightarrow \dfrac{dy}{y}=-3dx\]
We can now integrate on both the sides, we get
\[\begin{align}
& \Rightarrow \int{\dfrac{dy}{y}}=\int{-3dx} \\
& \Rightarrow \ln \left| y \right|=-3x+C\text{ }\because \int{\dfrac{1}{y}dy=\ln \left| y \right|},\int{\left( -3 \right)dx}=-3x \\
\end{align}\]
Now we can use the initial condition \[y\left( 0 \right)=4\], in the above step, we get
\[\begin{align}
& \Rightarrow \ln \left| 4 \right|=-3\left( 0 \right)+C \\
& \Rightarrow C=\ln \left| 4 \right| \\
\end{align}\]
We can substitute this C value, we get
\[\Rightarrow \ln \left| y \right|=-3x+\ln \left( 4 \right)\]
Now we can take exponent on both the sides, we get
\[\Rightarrow {{e}^{\ln \left| y\right|}}={{e}^{-3x+\ln \left| 4 \right|}}\]
Now we can use the exponent rule, we get
\[\begin{align}
& \Rightarrow y={{e}^{-3x}}.{{e}^{\ln \left| 4 \right|}} \\
& \Rightarrow y={{e}^{-3x}}.4\text{ }\,\,\, \because {{\text{e}}^{\ln \left| 4 \right|}}=4 \\
\end{align}\]
Therefore, the value is \[y=4{{e}^{-3x}}\].
Note: Students should know some basic integration formulas and rules to solve these types of problems. We should also know exponent rules to simplify this problem. We can also use the first order linear ordinary differential equation and we can derive an integrating factor and we can multiply the integrating factor to the differential equation to solve this problem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE