Answer
Verified
396.3k+ views
Hint: Here the given question need to find the curved surface area of the tent in order to get the total area of the canvas required here, and then it need to find the total cost of the canvas, for which cost of per meter square of canvas is given here.
Formulae Used: Curved surface area of cone:
\[ \Rightarrow A = \pi r\left( {\sqrt {{h^2} + {r^2}} } \right)\]
Where r, is the radius of the base and,
\[ \Rightarrow \sqrt {{h^2} + {r^2}} = l\]
Here “l” is the slant height of the cone.
Complete step-by-step solution:
Here the given question is to first find the surface area of the tent and then find the total cost of the tent, for which cost of per square meter of canvas is given to us, here we know that tent is in the shape of the cone, and to find the surface area of the tent we need to find the surface area of the cone, here on solving we get:
\[
\Rightarrow A = \pi \times 5\left( {\sqrt {{{12}^2} + {5^2}} } \right) \\
\Rightarrow A = 3.14 \times 5\left( {\sqrt {144 + 25} } \right) \\
\Rightarrow A = 15.70\left( {\sqrt {169} } \right) \\
\Rightarrow A = 15.70\left( {13} \right) \\
\Rightarrow A = 15.70\left( {13} \right) = 204.1{m^2} \]
Here we get the total surface area of the tent or cone, and the area of the canvas required will be the same as the area of the cone.
Now cost of the canvas can be given by:
\[ \Rightarrow \cos t = 204.1 \times 100 = Rs20410\]
Note: To solve for the statement type question, we always need to first formulate the statement into a mathematical equation and thus solve according to the context given in the question, as for this question we need to use the formulae for the surface area of the cone.
Formulae Used: Curved surface area of cone:
\[ \Rightarrow A = \pi r\left( {\sqrt {{h^2} + {r^2}} } \right)\]
Where r, is the radius of the base and,
\[ \Rightarrow \sqrt {{h^2} + {r^2}} = l\]
Here “l” is the slant height of the cone.
Complete step-by-step solution:
Here the given question is to first find the surface area of the tent and then find the total cost of the tent, for which cost of per square meter of canvas is given to us, here we know that tent is in the shape of the cone, and to find the surface area of the tent we need to find the surface area of the cone, here on solving we get:
\[
\Rightarrow A = \pi \times 5\left( {\sqrt {{{12}^2} + {5^2}} } \right) \\
\Rightarrow A = 3.14 \times 5\left( {\sqrt {144 + 25} } \right) \\
\Rightarrow A = 15.70\left( {\sqrt {169} } \right) \\
\Rightarrow A = 15.70\left( {13} \right) \\
\Rightarrow A = 15.70\left( {13} \right) = 204.1{m^2} \]
Here we get the total surface area of the tent or cone, and the area of the canvas required will be the same as the area of the cone.
Now cost of the canvas can be given by:
\[ \Rightarrow \cos t = 204.1 \times 100 = Rs20410\]
Note: To solve for the statement type question, we always need to first formulate the statement into a mathematical equation and thus solve according to the context given in the question, as for this question we need to use the formulae for the surface area of the cone.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE