Answer
Verified
497.4k+ views
Hint: First convert ‘I’ into polar form by using the formulae $\tan \alpha =\dfrac{b}{a}$, ${{r}^{2}}={{a}^{2}}+{{b}^{2}}$, and \[z=r\times \left( \cos \alpha +i\sin \alpha \right)\] . Then take square roots on both sides and use the Demoivre's theorem i.e. \[{{z}^{n}}={{r}^{n}}\times \left[ \cos \left( n\times \alpha \right)+i\sin \left( n\times \alpha \right) \right]\] to get the square root of ‘i’.
Complete step-by-step answer:
To find the value of ‘I’ we will assume it as ‘z’,
$\therefore z=i$
Above equation can also be written as,
$\therefore z=0+i$
If we compare above equation with z = a + bi we can write,
a = 0 , b = 1 ………………………………………………… (i)
Now to find the square root of ‘I’ we have to convert it into polar form so that we can do some operations on that, and for that we have to find the angle $\alpha $ and radius ‘r’ by using the formulae given below,
Formulae:
$\tan \alpha =\dfrac{b}{a}$
${{r}^{2}}={{a}^{2}}+{{b}^{2}}$
By using formula (1) and values of equation (i) we will get,
$\therefore \tan \alpha =\dfrac{1}{0}$
As we know the value of $\dfrac{1}{0}$ is $\infty $ therefore we will get,
$\therefore \tan \alpha =\infty $
$\therefore \alpha ={{\tan }^{-1}}\infty $
As, $\tan \dfrac{\pi }{2}=\infty $ therefore ${{\tan }^{-1}}\infty =\dfrac{\pi }{2}$, therefore above equation will become,
$\therefore \alpha =\dfrac{\pi }{2}$ ……………………………………………… (ii)
Also, By using formula and the values of equation (i) we will get,
${{r}^{2}}={{a}^{2}}+{{b}^{2}}$
\[\therefore {{r}^{2}}={{0}^{2}}+{{1}^{2}}\]
\[\therefore {{r}^{2}}={{1}^{2}}\]
Taking square root on both sides of the equation we will get,
\[\therefore r=1\] ……………………………………………… (iii)
As we have to convert ‘i’ in to polar form therefore we should know the formula of polar form given below,
Formula:
\[z=r\times \left( \cos \alpha +i\sin \alpha \right)\]
If we put the values of equation (ii) and equation (iii) in the above equation we will get,
\[\therefore z=1\times \left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)\]
\[\therefore z=\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)\]
As we assumed z = i therefore above equation will become,
\[\therefore i=\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)\]
As we have to find the square root to ‘i’ therefore we will take square roots on both sides of the above equation,
\[\therefore \sqrt{i}=\sqrt{\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)}\]
As we all know that the square root is nothing but the \[\dfrac{1}{2}\]th power of the term, therefore above equation will become,
\[\therefore \sqrt{i}={{\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)}^{\dfrac{1}{2}}}\] ……………………………………………….. (iv)
Now to proceed further in the solution we should know the Demoivre's theorem given below,
Demoivre's theorem:
If ‘z’ be any complex number represented by \[z=r\times \left( \cos \alpha +i\sin \alpha \right)\] then,
\[{{z}^{n}}={{r}^{n}}\times \left[ \cos \left( n\times \alpha \right)+i\sin \left( n\times \alpha \right) \right]\]
By using Demoivre's theorem, equation (iv) will become,
\[\therefore \sqrt{i}=\cos \left( \dfrac{1}{2}\times \dfrac{\pi }{2} \right)+i\sin \left( \dfrac{1}{2}\times \dfrac{\pi }{2} \right)\]
\[\therefore \sqrt{i}=\cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right)\]
As we know that, \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] and \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] therefore above equation will become,
\[\therefore \sqrt{i}=\dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}}\]
\[\therefore \sqrt{i}=\dfrac{1+i}{\sqrt{2}}\]
Therefore the value of \[\sqrt{i}\] is equal to \[\dfrac{1+i}{\sqrt{2}}\].
Therefore the correct answer is option (c)
Note: Demoivre's theorem i.e. \[{{z}^{n}}={{r}^{n}}\times \left[ \cos \left( n\times \alpha \right)+i\sin \left( n\times \alpha \right) \right]\] plays very important role in this problem as without using it you can face a very lengthy solution therefore to avoid the complexity try to remember it.
Complete step-by-step answer:
To find the value of ‘I’ we will assume it as ‘z’,
$\therefore z=i$
Above equation can also be written as,
$\therefore z=0+i$
If we compare above equation with z = a + bi we can write,
a = 0 , b = 1 ………………………………………………… (i)
Now to find the square root of ‘I’ we have to convert it into polar form so that we can do some operations on that, and for that we have to find the angle $\alpha $ and radius ‘r’ by using the formulae given below,
Formulae:
$\tan \alpha =\dfrac{b}{a}$
${{r}^{2}}={{a}^{2}}+{{b}^{2}}$
By using formula (1) and values of equation (i) we will get,
$\therefore \tan \alpha =\dfrac{1}{0}$
As we know the value of $\dfrac{1}{0}$ is $\infty $ therefore we will get,
$\therefore \tan \alpha =\infty $
$\therefore \alpha ={{\tan }^{-1}}\infty $
As, $\tan \dfrac{\pi }{2}=\infty $ therefore ${{\tan }^{-1}}\infty =\dfrac{\pi }{2}$, therefore above equation will become,
$\therefore \alpha =\dfrac{\pi }{2}$ ……………………………………………… (ii)
Also, By using formula and the values of equation (i) we will get,
${{r}^{2}}={{a}^{2}}+{{b}^{2}}$
\[\therefore {{r}^{2}}={{0}^{2}}+{{1}^{2}}\]
\[\therefore {{r}^{2}}={{1}^{2}}\]
Taking square root on both sides of the equation we will get,
\[\therefore r=1\] ……………………………………………… (iii)
As we have to convert ‘i’ in to polar form therefore we should know the formula of polar form given below,
Formula:
\[z=r\times \left( \cos \alpha +i\sin \alpha \right)\]
If we put the values of equation (ii) and equation (iii) in the above equation we will get,
\[\therefore z=1\times \left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)\]
\[\therefore z=\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)\]
As we assumed z = i therefore above equation will become,
\[\therefore i=\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)\]
As we have to find the square root to ‘i’ therefore we will take square roots on both sides of the above equation,
\[\therefore \sqrt{i}=\sqrt{\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)}\]
As we all know that the square root is nothing but the \[\dfrac{1}{2}\]th power of the term, therefore above equation will become,
\[\therefore \sqrt{i}={{\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \right)}^{\dfrac{1}{2}}}\] ……………………………………………….. (iv)
Now to proceed further in the solution we should know the Demoivre's theorem given below,
Demoivre's theorem:
If ‘z’ be any complex number represented by \[z=r\times \left( \cos \alpha +i\sin \alpha \right)\] then,
\[{{z}^{n}}={{r}^{n}}\times \left[ \cos \left( n\times \alpha \right)+i\sin \left( n\times \alpha \right) \right]\]
By using Demoivre's theorem, equation (iv) will become,
\[\therefore \sqrt{i}=\cos \left( \dfrac{1}{2}\times \dfrac{\pi }{2} \right)+i\sin \left( \dfrac{1}{2}\times \dfrac{\pi }{2} \right)\]
\[\therefore \sqrt{i}=\cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right)\]
As we know that, \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] and \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] therefore above equation will become,
\[\therefore \sqrt{i}=\dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}}\]
\[\therefore \sqrt{i}=\dfrac{1+i}{\sqrt{2}}\]
Therefore the value of \[\sqrt{i}\] is equal to \[\dfrac{1+i}{\sqrt{2}}\].
Therefore the correct answer is option (c)
Note: Demoivre's theorem i.e. \[{{z}^{n}}={{r}^{n}}\times \left[ \cos \left( n\times \alpha \right)+i\sin \left( n\times \alpha \right) \right]\] plays very important role in this problem as without using it you can face a very lengthy solution therefore to avoid the complexity try to remember it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE