Answer
Verified
394.8k+ views
Hint: According to the question we are been asked to state any two axioms and postulates of Euclid’s and then we are been asked to find the remainder after dividing polynomial $p\left( x \right)={{x}^{3}}-6{{x}^{2}}+2x-4$by polynomial $q\left( x \right)=1-2x$.
Complete step by step answer:
Two Euclid’s axioms are:
(i) Things which are equal to the same are also equal with one another.
(ii) If equals are added to equals then holes are equal.
Postulates are:
(i) A circle can be drawn with any center and any radius.
(ii) A terminated line can be produced indefinitely.
Now, we are having polynomial $p\left( x \right)={{x}^{3}}-6{{x}^{2}}+2x-4$and we need to divide this with another polynomial which is $q\left( x \right)=1-2x$and hence attain the remainder as asked in the question.
Since, we know that the zero of q(x) is $\dfrac{1}{2}$ therefore, by using remainder theorem the remainder should be \[f\left( \dfrac{1}{2} \right)\].
$\begin{align}
& \therefore f\left( \dfrac{1}{2} \right)={{\left( \dfrac{1}{2} \right)}^{3}}-6{{\left( \dfrac{1}{2} \right)}^{2}}+2\left( \dfrac{1}{2} \right)-4 \\
& \Rightarrow \dfrac{1}{8}-6\left( \dfrac{1}{4} \right)+1-4 \\
& \Rightarrow \dfrac{1}{8}-\dfrac{6}{4}-3 \\
\end{align}$
Now taking the lcm and then solving this after simplifying we get $-\dfrac{35}{8}$ .
Therefore, the remainder after dividing p(x) from q(x) is $-\dfrac{35}{8}$.
Note: In this question we need some theory of Euclid’s and then we must know how to divide polynomials. We need to take care while dividing as we need to make the power the same and then cancel the terms and find the remainder which is although easy but may lead to some kind of careless mistakes.
Complete step by step answer:
Two Euclid’s axioms are:
(i) Things which are equal to the same are also equal with one another.
(ii) If equals are added to equals then holes are equal.
Postulates are:
(i) A circle can be drawn with any center and any radius.
(ii) A terminated line can be produced indefinitely.
Now, we are having polynomial $p\left( x \right)={{x}^{3}}-6{{x}^{2}}+2x-4$and we need to divide this with another polynomial which is $q\left( x \right)=1-2x$and hence attain the remainder as asked in the question.
Since, we know that the zero of q(x) is $\dfrac{1}{2}$ therefore, by using remainder theorem the remainder should be \[f\left( \dfrac{1}{2} \right)\].
$\begin{align}
& \therefore f\left( \dfrac{1}{2} \right)={{\left( \dfrac{1}{2} \right)}^{3}}-6{{\left( \dfrac{1}{2} \right)}^{2}}+2\left( \dfrac{1}{2} \right)-4 \\
& \Rightarrow \dfrac{1}{8}-6\left( \dfrac{1}{4} \right)+1-4 \\
& \Rightarrow \dfrac{1}{8}-\dfrac{6}{4}-3 \\
\end{align}$
Now taking the lcm and then solving this after simplifying we get $-\dfrac{35}{8}$ .
Therefore, the remainder after dividing p(x) from q(x) is $-\dfrac{35}{8}$.
Note: In this question we need some theory of Euclid’s and then we must know how to divide polynomials. We need to take care while dividing as we need to make the power the same and then cancel the terms and find the remainder which is although easy but may lead to some kind of careless mistakes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE