Answer
Verified
436.5k+ views
Hint: Resistors are said to be in a parallel state when both the terminals of the resistors are connected to each terminal of the other resistors. The resistors in parallel have a common voltage across all the resistors. Here, we will use four resistors connected in parallel to find the law of combination of resistances.
Complete answer:
The figure below shows the circuit in which the resistors are placed parallel to each other.
Let ${R_1}$ , ${R_2}$ , ${R_3}$ and ${R_4}$ are resistors that are connected parallel to each other. Here, the voltage drop across each resistor will be the same but the electric current in the circuit will divide itself to travel through all the different branches. Now. to derive the equation of resistance in parallel, we will use Ohm’s law which is given by
$V = IR$
$I = \dfrac{V}{R}$
Here, $I$ is the current in the circuit, $V$ is the voltage, and $R$ is the resistance in the circuit.
Now, according to Kirchhoff’s law, we get
$\sum {{I_{in}}\, = \,\sum {{I_{out}}} } $
$ \Rightarrow \,I = {I_1} + {I_2}$
$I = \dfrac{{{V_1}}}{{{R_1}}} + \dfrac{{{V_2}}}{{{R_2}}}$
Since the voltage drop across the resistors is the same. Therefore,
$I = \dfrac{V}{{{R_1}}} + \dfrac{V}{{{R_2}}}$
$ \Rightarrow \,I = V\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
$ \Rightarrow \,\dfrac{I}{V} = \left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
$ \Rightarrow \,{R_p} = {\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)^{ - 1}}$
Therefore, the resistance in the parallel series are
$\therefore{R_p} = {\left( {\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ...... + \dfrac{1}{{{R_{n - 1}}}} + \dfrac{1}{{{R_n}}}} \right)^{ - 1}}$
This means that the combined resistance in the parallel circuit will be equal to the sum of the reciprocal of all the individual resistances.Therefore, the law of combination of resistances in parallel states that the reciprocal of the combined resistance of all the resistors connected in parallel is equal to the sum of the reciprocal of all the individual resistance.
Note:In a parallel resistor circuit, the voltage across all the resistors will be the same. Therefore, the voltage in the resistor ${R_1}$ will be equal to the voltage in the resistor ${R_2}$ and is also equal to the voltage in the resistor ${R_3}$ . That is why we have used the same voltage for all the resistances.
Complete answer:
The figure below shows the circuit in which the resistors are placed parallel to each other.
Let ${R_1}$ , ${R_2}$ , ${R_3}$ and ${R_4}$ are resistors that are connected parallel to each other. Here, the voltage drop across each resistor will be the same but the electric current in the circuit will divide itself to travel through all the different branches. Now. to derive the equation of resistance in parallel, we will use Ohm’s law which is given by
$V = IR$
$I = \dfrac{V}{R}$
Here, $I$ is the current in the circuit, $V$ is the voltage, and $R$ is the resistance in the circuit.
Now, according to Kirchhoff’s law, we get
$\sum {{I_{in}}\, = \,\sum {{I_{out}}} } $
$ \Rightarrow \,I = {I_1} + {I_2}$
$I = \dfrac{{{V_1}}}{{{R_1}}} + \dfrac{{{V_2}}}{{{R_2}}}$
Since the voltage drop across the resistors is the same. Therefore,
$I = \dfrac{V}{{{R_1}}} + \dfrac{V}{{{R_2}}}$
$ \Rightarrow \,I = V\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
$ \Rightarrow \,\dfrac{I}{V} = \left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
$ \Rightarrow \,{R_p} = {\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)^{ - 1}}$
Therefore, the resistance in the parallel series are
$\therefore{R_p} = {\left( {\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ...... + \dfrac{1}{{{R_{n - 1}}}} + \dfrac{1}{{{R_n}}}} \right)^{ - 1}}$
This means that the combined resistance in the parallel circuit will be equal to the sum of the reciprocal of all the individual resistances.Therefore, the law of combination of resistances in parallel states that the reciprocal of the combined resistance of all the resistors connected in parallel is equal to the sum of the reciprocal of all the individual resistance.
Note:In a parallel resistor circuit, the voltage across all the resistors will be the same. Therefore, the voltage in the resistor ${R_1}$ will be equal to the voltage in the resistor ${R_2}$ and is also equal to the voltage in the resistor ${R_3}$ . That is why we have used the same voltage for all the resistances.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE