Answer
Verified
469.2k+ views
Hint: Equipartition means total energy which is contributed equally over all directions. Total energy possesses translational, rotational and vibrational energy. The molecule which doesn't possess vibrational or rotational energy will only possess translational energy.
Complete step-by-step answer:
Consider a molecule in three dimensions. That is X, Y, Z.
Then kinetic energy of a single molecule in X, Y, Z dimension is given by,
$E=\dfrac{1}{2}mv_{x}^{2}+\dfrac{1}{2}mv_{y}^{2}+\dfrac{1}{2}mv_{z}^{2}$ ---------(1)
This is translational energy.
Consider two molecules having angular speed of about its own axis and are the corresponding moment of inertia.
Since it do moment in all direction therefore it has both energy translational and rotational energy which is given by,
\[\begin{align}
& TotalEnergy(E)={{E}_{_{tr}}}+{{E}_{rot}} \\
& Total Energy={{E}_{_{tr}}}+\dfrac{1}{2}{{I}_{1}}\omega _{1}^{2}+\dfrac{1}{2}{{I}_{2}}\omega _{2}^{2} \\
& {{E}_{_{tr}}}+{{E}_{rot}}=\dfrac{1}{2}mv_{x}^{2}+\dfrac{1}{2}mv_{y}^{2}+\dfrac{1}{2}mv_{z}^{2}+\dfrac{1}{2}{{I}_{1}}\omega _{1}^{2}+\dfrac{1}{2}{{I}_{2}}\omega _{2}^{2} \\
\end{align}\]
But some molecules possess vibrational energy also. Even at moderate temperature, molecules possess vibrational motion like CO.
Therefore it contributes a vibrational energy to the total energy.
Therefore total energy is given by,
\[TotalEnergy(E)={{E}_{_{tr}}}+{{E}_{rot}}\]
\[{{E}_{vr}}\]is equal to $\dfrac{1}{2}m{{\left( \dfrac{dy}{dt} \right)}^{2}}+\dfrac{1}{2}k{{y}^{2}}$
Where k is force constant if the oscillator and y the vibrational coordinate.
In equilibrium the total energy is equally distributed in all possible energy modes, with each mode having an average energy equal to $\dfrac{1}{2}{{K}_{B}}T.$ This is known as equipartition of energy.
Note: Each translational and rotational degree of freedom has contributed only one squared term, but one vibrational mode contributes kinetic and potential energies. Therefore each translational and rotational degree of freedom of a molecule contributes to $\dfrac{1}{2}{{K}_{B}}T$ energy while each vibrational frequency contributes $2\times \dfrac{1}{2}{{K}_{B}}T={{K}_{B}}T$.
Complete step-by-step answer:
Consider a molecule in three dimensions. That is X, Y, Z.
Then kinetic energy of a single molecule in X, Y, Z dimension is given by,
$E=\dfrac{1}{2}mv_{x}^{2}+\dfrac{1}{2}mv_{y}^{2}+\dfrac{1}{2}mv_{z}^{2}$ ---------(1)
This is translational energy.
Consider two molecules having angular speed of about its own axis and are the corresponding moment of inertia.
Since it do moment in all direction therefore it has both energy translational and rotational energy which is given by,
\[\begin{align}
& TotalEnergy(E)={{E}_{_{tr}}}+{{E}_{rot}} \\
& Total Energy={{E}_{_{tr}}}+\dfrac{1}{2}{{I}_{1}}\omega _{1}^{2}+\dfrac{1}{2}{{I}_{2}}\omega _{2}^{2} \\
& {{E}_{_{tr}}}+{{E}_{rot}}=\dfrac{1}{2}mv_{x}^{2}+\dfrac{1}{2}mv_{y}^{2}+\dfrac{1}{2}mv_{z}^{2}+\dfrac{1}{2}{{I}_{1}}\omega _{1}^{2}+\dfrac{1}{2}{{I}_{2}}\omega _{2}^{2} \\
\end{align}\]
But some molecules possess vibrational energy also. Even at moderate temperature, molecules possess vibrational motion like CO.
Therefore it contributes a vibrational energy to the total energy.
Therefore total energy is given by,
\[TotalEnergy(E)={{E}_{_{tr}}}+{{E}_{rot}}\]
\[{{E}_{vr}}\]is equal to $\dfrac{1}{2}m{{\left( \dfrac{dy}{dt} \right)}^{2}}+\dfrac{1}{2}k{{y}^{2}}$
Where k is force constant if the oscillator and y the vibrational coordinate.
In equilibrium the total energy is equally distributed in all possible energy modes, with each mode having an average energy equal to $\dfrac{1}{2}{{K}_{B}}T.$ This is known as equipartition of energy.
Note: Each translational and rotational degree of freedom has contributed only one squared term, but one vibrational mode contributes kinetic and potential energies. Therefore each translational and rotational degree of freedom of a molecule contributes to $\dfrac{1}{2}{{K}_{B}}T$ energy while each vibrational frequency contributes $2\times \dfrac{1}{2}{{K}_{B}}T={{K}_{B}}T$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE