Answer
Verified
471.3k+ views
Hint: We will solve this in a simpler way. Here the interval is closed that means for f(x) = 13 the value of x can neither be less than 1 nor be greater than 2. And we will check this by putting values of x as 1 and 2 in the given function and also by using the mean value theorem.
Complete step-by-step answer:
Step-1
We have \[f(x) = {x^3} + \cos \pi x + 7\]
In the interval of [1,2],
Step-2
$f(1) = {1^3} + \cos \pi + 7$
$ \Rightarrow f(1) = 1 + 1 + 7$
$ \Rightarrow f(1) = 9$……………(1)
And $f(2) = {2^3} + \cos 2\pi + 7$
Or, $f(2) = 8 + 1 + 7$
Or, $f(2) = 16$………..(2)
Step-3
From above two value we get to know that $f(1) < f(x) = 13 < f(2)$
So, from this we get to know that \[f(x) = 13\] has a solution in the interval of (1,2).
Step-4
For\[f(x) = {x^3} + \cos \pi x + 7\] to be continuous f’(x) must be greater than 0.
For that,
$f(c) = \dfrac{{f(2) - f(1)}}{{2 - 1}}$
$f(c) = \dfrac{{16 - 9}}{{2 - 1}}$
$f(c) = 7$
Step-5
Again differentiating f(x) we get,
$f'(x) = 3{x^2} - \pi \sin \pi x$
Step-6
We know that,
$f'(x) = 3{x^2} - \pi \sin \pi x = f(c)$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x = 7$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x > 0$, for all x belongs to closed [1,2]
Step-7
Hence, f(x) is a continuous function at [1,2].
F(x) is a strictly increasing function.
Therefore for \[f(x) = 13\], it has exactly one solution in the closed interval of [1,2].
So, the correct answer is “Option A”.
Note: Mean value theorem- The mean value theorem states that if a function f is continuous on the closed interval of [a, b ] and differentiable on the open interval ( a, b ), then there exist a point C in the interval (a, b ) such that f’(c) is equal to the functions average rate of change over closed interval [a, b ].
Difference between open interval and closed interval is, an open interval does not include its limit points while closed interval does.
Complete step-by-step answer:
Step-1
We have \[f(x) = {x^3} + \cos \pi x + 7\]
In the interval of [1,2],
Step-2
$f(1) = {1^3} + \cos \pi + 7$
$ \Rightarrow f(1) = 1 + 1 + 7$
$ \Rightarrow f(1) = 9$……………(1)
And $f(2) = {2^3} + \cos 2\pi + 7$
Or, $f(2) = 8 + 1 + 7$
Or, $f(2) = 16$………..(2)
Step-3
From above two value we get to know that $f(1) < f(x) = 13 < f(2)$
So, from this we get to know that \[f(x) = 13\] has a solution in the interval of (1,2).
Step-4
For\[f(x) = {x^3} + \cos \pi x + 7\] to be continuous f’(x) must be greater than 0.
For that,
$f(c) = \dfrac{{f(2) - f(1)}}{{2 - 1}}$
$f(c) = \dfrac{{16 - 9}}{{2 - 1}}$
$f(c) = 7$
Step-5
Again differentiating f(x) we get,
$f'(x) = 3{x^2} - \pi \sin \pi x$
Step-6
We know that,
$f'(x) = 3{x^2} - \pi \sin \pi x = f(c)$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x = 7$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x > 0$, for all x belongs to closed [1,2]
Step-7
Hence, f(x) is a continuous function at [1,2].
F(x) is a strictly increasing function.
Therefore for \[f(x) = 13\], it has exactly one solution in the closed interval of [1,2].
So, the correct answer is “Option A”.
Note: Mean value theorem- The mean value theorem states that if a function f is continuous on the closed interval of [a, b ] and differentiable on the open interval ( a, b ), then there exist a point C in the interval (a, b ) such that f’(c) is equal to the functions average rate of change over closed interval [a, b ].
Difference between open interval and closed interval is, an open interval does not include its limit points while closed interval does.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE