Answer
Verified
427.8k+ views
Hint: Velocity of a particle in a simple harmonic motion can be given in terms of amplitude, angular velocity and position of the particle. Squaring and dividing the equation accordingly, we can convert the equation into the equation for ellipse.
Formula used:
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Complete step-by-step solution:
In a simple harmonic motion, velocity is given by,
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Where,
\[\omega \]is the angular frequency
\[x\] is the position of the particle.
\[a\]is the amplitude of the particle
Then,
\[{{v}^{2}}={{\omega }^{2}}{{a}^{2}}-{{\omega }^{2}}{{x}^{2}}\] --------- 1
Dividing both sides of the equation 1 by \[{{\omega }^{2}}{{a}^{2}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}=1-\dfrac{{{\omega }^{2}}{{x}^{2}}}{{{\omega }^{2}}{{a}^{2}}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}+\dfrac{{{x}^{2}}}{{{a}^{2}}}=1\] ---------- 2
Velocity-displacement graph of a harmonic oscillator.
We have equation for ellipse as,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ------------- 3
Comparing equations 2 and 3, we can say that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
From the elliptical graph we can understand that the velocity is not changing uniformly with displacement in harmonic motion.
Hence, statement 1 is true, statement 2 is true, Statement 2 is not the correct explanation for statement 1.
Hence the answer is option C.
Note: The position of a particle in a simple harmonic motion is given by,
\[x=A\sin \omega t\]
Where,
\[A\] is the amplitude
\[\omega \] is the angular frequency
\[t\] is the time
Then,
\[\sin \omega t=\dfrac{x}{A}\]
Squaring the equation on both sides,
\[{{\sin }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{A}^{2}}}\]
Velocity in a simple harmonic motion is given by,
\[v=A\omega \cos \omega t\]
Then,
\[\cos \omega t=\dfrac{v}{A\omega }\]
Squaring the equation on both sides,
\[{{\cos }^{2}}\omega t=\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
\[{{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
We have,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
Then,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}=1\] ---------- (1)
Equation for ellipse is given by, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ----------(2)
Comparing the equations 1 and 2 we can see that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
Formula used:
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Complete step-by-step solution:
In a simple harmonic motion, velocity is given by,
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Where,
\[\omega \]is the angular frequency
\[x\] is the position of the particle.
\[a\]is the amplitude of the particle
Then,
\[{{v}^{2}}={{\omega }^{2}}{{a}^{2}}-{{\omega }^{2}}{{x}^{2}}\] --------- 1
Dividing both sides of the equation 1 by \[{{\omega }^{2}}{{a}^{2}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}=1-\dfrac{{{\omega }^{2}}{{x}^{2}}}{{{\omega }^{2}}{{a}^{2}}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}+\dfrac{{{x}^{2}}}{{{a}^{2}}}=1\] ---------- 2
Velocity-displacement graph of a harmonic oscillator.
We have equation for ellipse as,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ------------- 3
Comparing equations 2 and 3, we can say that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
From the elliptical graph we can understand that the velocity is not changing uniformly with displacement in harmonic motion.
Hence, statement 1 is true, statement 2 is true, Statement 2 is not the correct explanation for statement 1.
Hence the answer is option C.
Note: The position of a particle in a simple harmonic motion is given by,
\[x=A\sin \omega t\]
Where,
\[A\] is the amplitude
\[\omega \] is the angular frequency
\[t\] is the time
Then,
\[\sin \omega t=\dfrac{x}{A}\]
Squaring the equation on both sides,
\[{{\sin }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{A}^{2}}}\]
Velocity in a simple harmonic motion is given by,
\[v=A\omega \cos \omega t\]
Then,
\[\cos \omega t=\dfrac{v}{A\omega }\]
Squaring the equation on both sides,
\[{{\cos }^{2}}\omega t=\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
\[{{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
We have,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
Then,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}=1\] ---------- (1)
Equation for ellipse is given by, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ----------(2)
Comparing the equations 1 and 2 we can see that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
What organs are located on the left side of your body class 11 biology CBSE