Answer
Verified
439.5k+ views
Hint: Velocity of a particle in a simple harmonic motion can be given in terms of amplitude, angular velocity and position of the particle. Squaring and dividing the equation accordingly, we can convert the equation into the equation for ellipse.
Formula used:
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Complete step-by-step solution:
In a simple harmonic motion, velocity is given by,
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Where,
\[\omega \]is the angular frequency
\[x\] is the position of the particle.
\[a\]is the amplitude of the particle
Then,
\[{{v}^{2}}={{\omega }^{2}}{{a}^{2}}-{{\omega }^{2}}{{x}^{2}}\] --------- 1
Dividing both sides of the equation 1 by \[{{\omega }^{2}}{{a}^{2}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}=1-\dfrac{{{\omega }^{2}}{{x}^{2}}}{{{\omega }^{2}}{{a}^{2}}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}+\dfrac{{{x}^{2}}}{{{a}^{2}}}=1\] ---------- 2
Velocity-displacement graph of a harmonic oscillator.
We have equation for ellipse as,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ------------- 3
Comparing equations 2 and 3, we can say that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
From the elliptical graph we can understand that the velocity is not changing uniformly with displacement in harmonic motion.
Hence, statement 1 is true, statement 2 is true, Statement 2 is not the correct explanation for statement 1.
Hence the answer is option C.
Note: The position of a particle in a simple harmonic motion is given by,
\[x=A\sin \omega t\]
Where,
\[A\] is the amplitude
\[\omega \] is the angular frequency
\[t\] is the time
Then,
\[\sin \omega t=\dfrac{x}{A}\]
Squaring the equation on both sides,
\[{{\sin }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{A}^{2}}}\]
Velocity in a simple harmonic motion is given by,
\[v=A\omega \cos \omega t\]
Then,
\[\cos \omega t=\dfrac{v}{A\omega }\]
Squaring the equation on both sides,
\[{{\cos }^{2}}\omega t=\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
\[{{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
We have,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
Then,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}=1\] ---------- (1)
Equation for ellipse is given by, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ----------(2)
Comparing the equations 1 and 2 we can see that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
Formula used:
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Complete step-by-step solution:
In a simple harmonic motion, velocity is given by,
\[v=\omega \sqrt{{{a}^{2}}-{{x}^{2}}}\]
Where,
\[\omega \]is the angular frequency
\[x\] is the position of the particle.
\[a\]is the amplitude of the particle
Then,
\[{{v}^{2}}={{\omega }^{2}}{{a}^{2}}-{{\omega }^{2}}{{x}^{2}}\] --------- 1
Dividing both sides of the equation 1 by \[{{\omega }^{2}}{{a}^{2}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}=1-\dfrac{{{\omega }^{2}}{{x}^{2}}}{{{\omega }^{2}}{{a}^{2}}}\]
\[\dfrac{{{v}^{2}}}{{{\omega }^{2}}{{a}^{2}}}+\dfrac{{{x}^{2}}}{{{a}^{2}}}=1\] ---------- 2
Velocity-displacement graph of a harmonic oscillator.
We have equation for ellipse as,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ------------- 3
Comparing equations 2 and 3, we can say that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
From the elliptical graph we can understand that the velocity is not changing uniformly with displacement in harmonic motion.
Hence, statement 1 is true, statement 2 is true, Statement 2 is not the correct explanation for statement 1.
Hence the answer is option C.
Note: The position of a particle in a simple harmonic motion is given by,
\[x=A\sin \omega t\]
Where,
\[A\] is the amplitude
\[\omega \] is the angular frequency
\[t\] is the time
Then,
\[\sin \omega t=\dfrac{x}{A}\]
Squaring the equation on both sides,
\[{{\sin }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{A}^{2}}}\]
Velocity in a simple harmonic motion is given by,
\[v=A\omega \cos \omega t\]
Then,
\[\cos \omega t=\dfrac{v}{A\omega }\]
Squaring the equation on both sides,
\[{{\cos }^{2}}\omega t=\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
\[{{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t=\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}\]
We have,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
Then,
\[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{v}^{2}}}{{{A}^{2}}{{\omega }^{2}}}=1\] ---------- (1)
Equation for ellipse is given by, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] ----------(2)
Comparing the equations 1 and 2 we can see that the graph between velocity and displacement for a harmonic oscillator is an ellipse.
Recently Updated Pages
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE