Answer
Verified
435k+ views
Hint: The molecules having the same molecular formula but a different arrangement of atoms are known as isomers. First, we will determine the degree of unsaturation, so we will know the number of unsaturated bonds. Then we will draw the possible geometries.
Complete answer:
First we will calculate the degree of unsaturation as follows:
${\text{D}}{\text{.U}}\,{\text{ = }}\,{\text{C}} + 1\, - \frac{{{\text{no}}{\text{. of monovalent}}\, - \,{\text{no}}{\text{. of}}\,{\text{trivalent}}}}{2}$
On substituting $5$ for C and $10$ for no. of monovalent,
${\text{D}}{\text{.U}}\,{\text{ = }}\,5 + 1\, - \frac{{10}}{2}$
\[{\text{D}}{\text{.U}}\,{\text{ = }}\,5\, + 1 - 5\]
\[{\text{D}}{\text{.U}}\,{\text{ = 1}}\]
So, the degree of unsaturation is \[{\text{1}}\]. So, we have the possibility of the presence of one double bond.
The isomers having same molecular formula but different structures are known as structural isomers.
We can draw the five carbon atoms chain having double bond at first carbon as follows:
We can change the position of double bond to get a new structural isomer as follows:
Now we can draw a four carbon chain having one methyl group as follows:
We can shift the position of methyl group from second carbon to third carbon as follows:
We can change the position of double bond from first carbon to second carbon in four carbon chain as follows:
The above all structures have the same molecular formula but are different molecules.So, we can draw $5$ structural isomers of ${{\text{C}}_5}{{\text{H}}_{10}}$.
Therefore, the total number of structural isomers can be drawn for ${{\text{C}}_5}{{\text{H}}_{10}}$ is, $5$.
Note: Isomers have the same molecular formula but different chemical formula. In structural terms the connectivity differs. A molecular formula shows the total number of an atom in the compound. The chemical formula shows the different group of atoms of a molecule. Here, ${{\text{C}}_5}{{\text{H}}_{10}}$is the molecular formula but the ${\text{C}}{{\text{H}}_2}{\text{CHC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}$ is the chemical formula of pentene. By the general formula of hydrocarbon, we will decide that the given molecular formula is representing the alkane, alkene, or alkyne. The general formula of the alkene is, ${{\text{C}}_{\text{n}}}{{\text{H}}_{{\text{2n}}}}$ .Where, n is the number of carbon atoms. So, ${{\text{C}}_5}{{\text{H}}_{10}}$is an alkene.
Complete answer:
First we will calculate the degree of unsaturation as follows:
${\text{D}}{\text{.U}}\,{\text{ = }}\,{\text{C}} + 1\, - \frac{{{\text{no}}{\text{. of monovalent}}\, - \,{\text{no}}{\text{. of}}\,{\text{trivalent}}}}{2}$
On substituting $5$ for C and $10$ for no. of monovalent,
${\text{D}}{\text{.U}}\,{\text{ = }}\,5 + 1\, - \frac{{10}}{2}$
\[{\text{D}}{\text{.U}}\,{\text{ = }}\,5\, + 1 - 5\]
\[{\text{D}}{\text{.U}}\,{\text{ = 1}}\]
So, the degree of unsaturation is \[{\text{1}}\]. So, we have the possibility of the presence of one double bond.
The isomers having same molecular formula but different structures are known as structural isomers.
We can draw the five carbon atoms chain having double bond at first carbon as follows:
We can change the position of double bond to get a new structural isomer as follows:
Now we can draw a four carbon chain having one methyl group as follows:
We can shift the position of methyl group from second carbon to third carbon as follows:
We can change the position of double bond from first carbon to second carbon in four carbon chain as follows:
The above all structures have the same molecular formula but are different molecules.So, we can draw $5$ structural isomers of ${{\text{C}}_5}{{\text{H}}_{10}}$.
Therefore, the total number of structural isomers can be drawn for ${{\text{C}}_5}{{\text{H}}_{10}}$ is, $5$.
Note: Isomers have the same molecular formula but different chemical formula. In structural terms the connectivity differs. A molecular formula shows the total number of an atom in the compound. The chemical formula shows the different group of atoms of a molecule. Here, ${{\text{C}}_5}{{\text{H}}_{10}}$is the molecular formula but the ${\text{C}}{{\text{H}}_2}{\text{CHC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}$ is the chemical formula of pentene. By the general formula of hydrocarbon, we will decide that the given molecular formula is representing the alkane, alkene, or alkyne. The general formula of the alkene is, ${{\text{C}}_{\text{n}}}{{\text{H}}_{{\text{2n}}}}$ .Where, n is the number of carbon atoms. So, ${{\text{C}}_5}{{\text{H}}_{10}}$is an alkene.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers