
Sum of \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms.
A. \[\dfrac{{1 + \left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{1 + a}}\]
B. \[\dfrac{{1 - 2\left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} + \dfrac{{n{a^n}}}{{1 - 2a}}\]
C. \[\dfrac{{1 - \left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{1 - a}}\]
D. None of these
Answer
519.9k+ views
Hint: In the given series the \[nth\] term is \[n{a^{n - 1}}\]. The sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Let \[S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + nth{\text{ term}}\]
Clearly, \[nth\] term is \[n{a^{n - 1}}\]\[ \Rightarrow S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}.....................................\left( 1 \right)\]
Multiplying both sides with ‘\[a\]’, we get
\[
\Rightarrow Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + n{a^{n - 1}}} \right)a \\
\Rightarrow Sa = 0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + \left( {n - 1} \right){a^{n - 1}} + n{a^n}...........................................\left( 2 \right) \\
\]
Subtracting equation (2) from (1), we get
\[
\Rightarrow S - Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}} \right) - \left( {0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + n{a^n}} \right) \\
\Rightarrow S\left( {1 - a} \right) = 1 + a + {a^2} + {a^3} + .............................. + {a^{n - 1}} - n{a^n} \\
\]
Clearly, the above series is in G.P of\[n\]terms with first term 1 and common ratio \[a\]
We know that, the sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].
By using the above formula, we have
\[ \Rightarrow S\left( {1 - a} \right) = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} - n{a^n}\]
Dividing both sides with \[\left( {1 - a} \right)\], we get
\[
\Rightarrow \dfrac{{S\left( {1 - a} \right)}}{{\left( {1 - a} \right)}} = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{1}{{\left( {1 - a} \right)}} - n{a^n} \times \dfrac{1}{{\left( {1 - a} \right)}} \\
\Rightarrow S = \dfrac{{ - 1\left( {1 - {a^n}} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{{ - 1}}{{\left( {a - 1} \right)}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\therefore S = \dfrac{{1\left( {1 - {a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\]
Therefore, the sum of the \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms is \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Thus, the correct option is C. \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Note: In equation (2) we added 0 as the first term so that you can subtract it from the equation (1) with no confusion. This has been done only for your understanding. Any way by doing this the value of the equation (2) doesn’t change. And observe that \[S\left( {1 - a} \right)\] has \[n + 1\]terms but, we have taken only \[n\]terms for the summation of the series by leaving the last term as it is.
Complete step-by-step answer:
Let \[S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + nth{\text{ term}}\]
Clearly, \[nth\] term is \[n{a^{n - 1}}\]\[ \Rightarrow S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}.....................................\left( 1 \right)\]
Multiplying both sides with ‘\[a\]’, we get
\[
\Rightarrow Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + n{a^{n - 1}}} \right)a \\
\Rightarrow Sa = 0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + \left( {n - 1} \right){a^{n - 1}} + n{a^n}...........................................\left( 2 \right) \\
\]
Subtracting equation (2) from (1), we get
\[
\Rightarrow S - Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}} \right) - \left( {0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + n{a^n}} \right) \\
\Rightarrow S\left( {1 - a} \right) = 1 + a + {a^2} + {a^3} + .............................. + {a^{n - 1}} - n{a^n} \\
\]
Clearly, the above series is in G.P of\[n\]terms with first term 1 and common ratio \[a\]
We know that, the sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].
By using the above formula, we have
\[ \Rightarrow S\left( {1 - a} \right) = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} - n{a^n}\]
Dividing both sides with \[\left( {1 - a} \right)\], we get
\[
\Rightarrow \dfrac{{S\left( {1 - a} \right)}}{{\left( {1 - a} \right)}} = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{1}{{\left( {1 - a} \right)}} - n{a^n} \times \dfrac{1}{{\left( {1 - a} \right)}} \\
\Rightarrow S = \dfrac{{ - 1\left( {1 - {a^n}} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{{ - 1}}{{\left( {a - 1} \right)}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\therefore S = \dfrac{{1\left( {1 - {a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\]
Therefore, the sum of the \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms is \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Thus, the correct option is C. \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Note: In equation (2) we added 0 as the first term so that you can subtract it from the equation (1) with no confusion. This has been done only for your understanding. Any way by doing this the value of the equation (2) doesn’t change. And observe that \[S\left( {1 - a} \right)\] has \[n + 1\]terms but, we have taken only \[n\]terms for the summation of the series by leaving the last term as it is.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
