Answer
Verified
497.4k+ views
Hint: Calculate the \[{{n}^{th}}\] term of the series and then observe that each term of this series is a sum of terms of AP and terms of a GP. Calculate the sum of n terms of this AP and the sum of n terms of this GP and the two sums to get the value of n terms of the given series.
Complete step-by-step answer:
We have a series \[x+a,{{x}^{2}}+2a,{{x}^{3}}+3a...\]. We have to find the sum of n terms of this series.
We observe that the \[{{n}^{th}}\] term of this series is \[na+{{x}^{n}}\].
So, we have to find the value of \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\].
We observe that each term of this series is written as a sum of terms of the AP \[a,2a,3a,...\] and GP \[x,{{x}^{2}},{{x}^{3}},...\], which means that the \[{{n}^{th}}\] term of the given series is written as a sum of \[{{n}^{th}}\] term of the GP and \[{{n}^{th}}\] term of the AP.
So, to find the sum of the given series, we will find the sum of n terms of AP and n terms of GP and then add the two values to get the sum of the given series.
We have the AP \[a,2a,3a,...\]. We have to find the sum of first n terms of this AP. We observe that the first term of this AP is a and the common difference is \[d=2a-a=a\].
We know that the sum of n terms of AP whose first term is ‘a’ and the common difference is ‘d’ is \[\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]\].
Substituting \[d=a\] in the above formula, we have \[a+2a+3a+...na=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)a \right]=\dfrac{n}{2}\left[ 2a+na-a \right]=\dfrac{n}{2}\left[ a+na \right]=\dfrac{n}{2}\left( n+1 \right)a.....\left( 1 \right)\].
We will now calculate the sum of n terms of the GP \[x,{{x}^{2}},{{x}^{3}},...\]. We observe that the first term of GP is ‘x’ and the common ratio is \[r=\dfrac{{{x}^{2}}}{x}=x\].
We know that sum of n terms of GP whose first term is ‘a’ and common ratio is ‘r’ is \[\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\].
Substituting \[a=x,r=x\] in the above formula, we have \[x+{{x}^{2}}+{{x}^{3}}+...{{x}^{n}}=\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}......\left( 2 \right)\].
We can rewrite \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\] as \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\left( a+2a+...na \right)+\left( x+{{x}^{2}}+...+{{x}^{n}} \right)\].
Using equation (1) and (2), we have \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].
Hence, the sum of n terms of the given series is \[\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].
Note: We must clearly know about any AP and GP. Arithmetic Progression (AP) is the sequence of numbers such that the difference between two consecutive terms is a constant. Geometric Progression (GP) is a sequence of numbers in which the ratio of two consecutive numbers is a constant.
Complete step-by-step answer:
We have a series \[x+a,{{x}^{2}}+2a,{{x}^{3}}+3a...\]. We have to find the sum of n terms of this series.
We observe that the \[{{n}^{th}}\] term of this series is \[na+{{x}^{n}}\].
So, we have to find the value of \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\].
We observe that each term of this series is written as a sum of terms of the AP \[a,2a,3a,...\] and GP \[x,{{x}^{2}},{{x}^{3}},...\], which means that the \[{{n}^{th}}\] term of the given series is written as a sum of \[{{n}^{th}}\] term of the GP and \[{{n}^{th}}\] term of the AP.
So, to find the sum of the given series, we will find the sum of n terms of AP and n terms of GP and then add the two values to get the sum of the given series.
We have the AP \[a,2a,3a,...\]. We have to find the sum of first n terms of this AP. We observe that the first term of this AP is a and the common difference is \[d=2a-a=a\].
We know that the sum of n terms of AP whose first term is ‘a’ and the common difference is ‘d’ is \[\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]\].
Substituting \[d=a\] in the above formula, we have \[a+2a+3a+...na=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)a \right]=\dfrac{n}{2}\left[ 2a+na-a \right]=\dfrac{n}{2}\left[ a+na \right]=\dfrac{n}{2}\left( n+1 \right)a.....\left( 1 \right)\].
We will now calculate the sum of n terms of the GP \[x,{{x}^{2}},{{x}^{3}},...\]. We observe that the first term of GP is ‘x’ and the common ratio is \[r=\dfrac{{{x}^{2}}}{x}=x\].
We know that sum of n terms of GP whose first term is ‘a’ and common ratio is ‘r’ is \[\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\].
Substituting \[a=x,r=x\] in the above formula, we have \[x+{{x}^{2}}+{{x}^{3}}+...{{x}^{n}}=\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}......\left( 2 \right)\].
We can rewrite \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\] as \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\left( a+2a+...na \right)+\left( x+{{x}^{2}}+...+{{x}^{n}} \right)\].
Using equation (1) and (2), we have \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].
Hence, the sum of n terms of the given series is \[\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].
Note: We must clearly know about any AP and GP. Arithmetic Progression (AP) is the sequence of numbers such that the difference between two consecutive terms is a constant. Geometric Progression (GP) is a sequence of numbers in which the ratio of two consecutive numbers is a constant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE