Answer
Verified
460.8k+ views
Hint:
We know the multiplication of rows and columns of a matrix is the number of total entries in the matrix. So if a matrix is of the order\[\left( {m \times n} \right)\], the possible identical elements will be \[mn\]. For example if we take $6$ identical elements we can get \[4\] possible ordered matrices such as \[\left( {6 \times 1} \right), \left( {3 \times 2} \right), \left( {2 \times 3} \right), \left( {1 \times 6} \right)\].
Complete step by step solution:
To find all the possible orders of \[12\] identical elements we have to find all the ordered matrices of a natural number whose product is \[12\].
We have to find the two numbers whose product is $12$.
So the matrices that can be formed are of these orders \[\left( {1 \times 12} \right),\left( {2 \times 6} \right),\left( {3 \times 4} \right),\left( {4 \times 3} \right),\left( {6 \times 2} \right),\left( {12 \times 1} \right)\].
All of them will have the same 12 identical elements.
So, the possible orders it can have is \[6\].
Hence, option (c) is correct.
Note:
The common mistake all we do is sometimes we forget to count the repeating matrices such as $(1 \times 12)$ and $(12 \times 1)$, $(3 \times 4)$ and $(4 \times 3)$, $(2 \times 6)$ and $(12 \times 6)$. In this case rows and columns are interchanging so the matrix formation will be completely different. Hence, if we forget to count the repeating matrices the answer will be \[3\] which is completely wrong. We have to count all the possible matrices that can be formed.
We know the multiplication of rows and columns of a matrix is the number of total entries in the matrix. So if a matrix is of the order\[\left( {m \times n} \right)\], the possible identical elements will be \[mn\]. For example if we take $6$ identical elements we can get \[4\] possible ordered matrices such as \[\left( {6 \times 1} \right), \left( {3 \times 2} \right), \left( {2 \times 3} \right), \left( {1 \times 6} \right)\].
Complete step by step solution:
To find all the possible orders of \[12\] identical elements we have to find all the ordered matrices of a natural number whose product is \[12\].
We have to find the two numbers whose product is $12$.
So the matrices that can be formed are of these orders \[\left( {1 \times 12} \right),\left( {2 \times 6} \right),\left( {3 \times 4} \right),\left( {4 \times 3} \right),\left( {6 \times 2} \right),\left( {12 \times 1} \right)\].
All of them will have the same 12 identical elements.
So, the possible orders it can have is \[6\].
Hence, option (c) is correct.
Note:
The common mistake all we do is sometimes we forget to count the repeating matrices such as $(1 \times 12)$ and $(12 \times 1)$, $(3 \times 4)$ and $(4 \times 3)$, $(2 \times 6)$ and $(12 \times 6)$. In this case rows and columns are interchanging so the matrix formation will be completely different. Hence, if we forget to count the repeating matrices the answer will be \[3\] which is completely wrong. We have to count all the possible matrices that can be formed.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE