Answer
Verified
429.9k+ views
Hint: The first-order reaction is the reaction in which the rate of reaction is directly proportional to
the concentration of the reactant. The half-life of the first order reaction is inversely proportional to
the rate constant.
Formula used: ${{\text{t}}_{{\text{1/2}}}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
Complete step-by-step answer:The first-order rate constant formula is as follows:
$\,\,{\text{k = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}{\text{log}}\,\dfrac{{{{\text{A}}_{\text{o}}}}}{{{{\text{A}}_{\text{x}}}}}$
Where,
k is the first-order rate constant. The unit of first-order rate constant is${\text{tim}}{{\text{e}}^{ - 1}}$.
it is the time.
${{\text{A}}_{\text{o}}}$ is the initial concentration of the reactant.
${{\text{A}}_{\text{x}}}$ is the concentration of the reactant left at time t.
Half-life is the time at which the concentration of the reactant becomes half of the initial
concentration.
So, if the initial concentration is $1$ at half-life, the concentration will be $1/2$.
The first-order half-life formula is as follows:
\[\,\,{\text{k = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{{\text{t}}_{{\text{1/2}}}}}}{\text{log}}\,\dfrac{{\text{1}}}{{{\text{1/2}}}}\]
Where,
${{\text{t}}_{{\text{1/2}}}}$is the half-life.
${\text{k}}\,\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{{\text{1/2}}}}\,\,}}$
We will rearrange the formula half-life as follows:
${{\text{t}}_{{\text{1/2}}}}\,\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
Now we will use the first-order half-life formula to determine the rate constant as follows:
On substituting $6.93\,{\text{s}}$ for ${{\text{t}}_{{\text{1/2}}}}$.
${\text{k}}\,\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{{\text{6}}{\text{.93}}\,{\text{s}}\,\,}}$
${\text{k}}\,\,{\text{ = }}\,{\text{0}}{\text{.1}}\,{{\text{s}}^{ - 1}}$
So, the rate constant is $\,0.1\,{{\text{s}}^{ - 1}}$.
In the question, it is given that the rate constant would be $\,10\,{{\text{s}}^{ - 1}}$ whereas the rate constant is $\,0.1\,{{\text{s}}^{ - 1}}$ so, the statement is not true.
Therefore, option (B) False, is correct.
Additional information: The first order half-life does not depend upon the initial concentration of the reactant. The first-order reaction is never complete. The completion of $99.9$% of a first-order reaction took $10$ half-life.
Note: The unit of half-life and rate constant should be noticed as both the units should be the same.
The unit of half-life is time and the unit of the rate constant is ${\text{tim}}{{\text{e}}^{ - 1}}$ and the time can be taken in second, minute, hour or year.
the concentration of the reactant. The half-life of the first order reaction is inversely proportional to
the rate constant.
Formula used: ${{\text{t}}_{{\text{1/2}}}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
Complete step-by-step answer:The first-order rate constant formula is as follows:
$\,\,{\text{k = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}{\text{log}}\,\dfrac{{{{\text{A}}_{\text{o}}}}}{{{{\text{A}}_{\text{x}}}}}$
Where,
k is the first-order rate constant. The unit of first-order rate constant is${\text{tim}}{{\text{e}}^{ - 1}}$.
it is the time.
${{\text{A}}_{\text{o}}}$ is the initial concentration of the reactant.
${{\text{A}}_{\text{x}}}$ is the concentration of the reactant left at time t.
Half-life is the time at which the concentration of the reactant becomes half of the initial
concentration.
So, if the initial concentration is $1$ at half-life, the concentration will be $1/2$.
The first-order half-life formula is as follows:
\[\,\,{\text{k = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{{\text{t}}_{{\text{1/2}}}}}}{\text{log}}\,\dfrac{{\text{1}}}{{{\text{1/2}}}}\]
Where,
${{\text{t}}_{{\text{1/2}}}}$is the half-life.
${\text{k}}\,\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{{\text{1/2}}}}\,\,}}$
We will rearrange the formula half-life as follows:
${{\text{t}}_{{\text{1/2}}}}\,\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
Now we will use the first-order half-life formula to determine the rate constant as follows:
On substituting $6.93\,{\text{s}}$ for ${{\text{t}}_{{\text{1/2}}}}$.
${\text{k}}\,\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{{{\text{6}}{\text{.93}}\,{\text{s}}\,\,}}$
${\text{k}}\,\,{\text{ = }}\,{\text{0}}{\text{.1}}\,{{\text{s}}^{ - 1}}$
So, the rate constant is $\,0.1\,{{\text{s}}^{ - 1}}$.
In the question, it is given that the rate constant would be $\,10\,{{\text{s}}^{ - 1}}$ whereas the rate constant is $\,0.1\,{{\text{s}}^{ - 1}}$ so, the statement is not true.
Therefore, option (B) False, is correct.
Additional information: The first order half-life does not depend upon the initial concentration of the reactant. The first-order reaction is never complete. The completion of $99.9$% of a first-order reaction took $10$ half-life.
Note: The unit of half-life and rate constant should be noticed as both the units should be the same.
The unit of half-life is time and the unit of the rate constant is ${\text{tim}}{{\text{e}}^{ - 1}}$ and the time can be taken in second, minute, hour or year.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE