
What is \[{\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5})\] equal to?
A. 0
B. $\dfrac{\pi }{4}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{2}$
Answer
624.9k+ views
Hint:- The inverse trigonometry formulas of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$ can be used.
Given,
\[{\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5})\] =? -(1)
We know that , the inverse trigonometry formula of addition of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$ is ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x + ta}}{{\text{n}}^{ - 1}}{\text{y = ta}}{{\text{n}}^{ - 1}}(\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}})$ , xy<1 -(2)
Comparing the equation (1) with the equation (2) we get,
X = $\dfrac{1}{4}$ and y =$\dfrac{3}{5}$ .
We need to check whether xy<1 for applying the formula of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$
$
\Rightarrow {\text{xy = }}\left( {\dfrac{1}{4}} \right)\left( {\dfrac{3}{5}} \right){\text{ = }}\left( {\dfrac{3}{{20}}} \right) \\
\\
$
And,
$
\Rightarrow \dfrac{3}{{20}} < 1 \\
\Rightarrow {\text{xy < 1}} \\
$
So, the formula is applicable for a given set of x and y.
Putting the value of x and y in equation (2). We get,
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}(\dfrac{{\dfrac{1}{4}{\text{ + }}\dfrac{3}{5}}}{{1 - \left( {\dfrac{1}{4}} \right)\left( {\dfrac{3}{5}} \right)}})$
Solving right hand side , we get
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}(\dfrac{{\dfrac{{17}}{{20}}}}{{1 - \left( {\dfrac{3}{{20}}} \right)}})$
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{\dfrac{{17}}{{20}}}}{{\dfrac{{17}}{{20}}}}} \right)$
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}1$
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = }}\dfrac{\pi }{4}$
Hence the value of \[{\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5})\] is $\dfrac{\pi }{4}$. The answer is option B.
Note:- The domain and the range of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$ is R and $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ respectively. And ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x + ta}}{{\text{n}}^{ - 1}}{\text{y = ta}}{{\text{n}}^{ - 1}}(\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}})$ is applicable only when xy <1.
Given,
\[{\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5})\] =? -(1)
We know that , the inverse trigonometry formula of addition of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$ is ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x + ta}}{{\text{n}}^{ - 1}}{\text{y = ta}}{{\text{n}}^{ - 1}}(\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}})$ , xy<1 -(2)
Comparing the equation (1) with the equation (2) we get,
X = $\dfrac{1}{4}$ and y =$\dfrac{3}{5}$ .
We need to check whether xy<1 for applying the formula of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$
$
\Rightarrow {\text{xy = }}\left( {\dfrac{1}{4}} \right)\left( {\dfrac{3}{5}} \right){\text{ = }}\left( {\dfrac{3}{{20}}} \right) \\
\\
$
And,
$
\Rightarrow \dfrac{3}{{20}} < 1 \\
\Rightarrow {\text{xy < 1}} \\
$
So, the formula is applicable for a given set of x and y.
Putting the value of x and y in equation (2). We get,
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}(\dfrac{{\dfrac{1}{4}{\text{ + }}\dfrac{3}{5}}}{{1 - \left( {\dfrac{1}{4}} \right)\left( {\dfrac{3}{5}} \right)}})$
Solving right hand side , we get
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}(\dfrac{{\dfrac{{17}}{{20}}}}{{1 - \left( {\dfrac{3}{{20}}} \right)}})$
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{\dfrac{{17}}{{20}}}}{{\dfrac{{17}}{{20}}}}} \right)$
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}1$
${\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = }}\dfrac{\pi }{4}$
Hence the value of \[{\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5})\] is $\dfrac{\pi }{4}$. The answer is option B.
Note:- The domain and the range of ${\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)$ is R and $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ respectively. And ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x + ta}}{{\text{n}}^{ - 1}}{\text{y = ta}}{{\text{n}}^{ - 1}}(\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}})$ is applicable only when xy <1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

