Answer
Verified
441.6k+ views
Hint:
We first describe the general condition of two tangents from a fixed point on an ellipse. We put the values for the point $ P\left( 3,4 \right) $ to the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ . We get the equations of the tangents. These lines touch the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ at points A and B. we find the intersecting points. Then using the vertical line of AP, we find the y-coordinate of the orthocentre.
Complete step by step answer:
Tangents are drawn from the point $ P\left( 3,4 \right) $ to the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ touching the ellipse at points A and B.
From a fixed point $ \left( m,n \right) $ in general two tangents can be drawn to an ellipse. The equation of pair of tangents drawn to the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is given by
$ \left( \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}-1 \right)\left( \dfrac{{{m}^{2}}}{{{a}^{2}}}+\dfrac{{{n}^{2}}}{{{b}^{2}}}-1 \right)={{\left( \dfrac{mx}{{{a}^{2}}}+\dfrac{ny}{{{b}^{2}}}-1 \right)}^{2}} $ .
In symbol we write $ S{{S}_{1}}={{T}^{2}} $ , where \[S=\left( \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}-1 \right),{{S}_{1}}=\left( \dfrac{{{m}^{2}}}{{{a}^{2}}}+\dfrac{{{n}^{2}}}{{{b}^{2}}}-1 \right),T=\left( \dfrac{mx}{{{a}^{2}}}+\dfrac{ny}{{{b}^{2}}}-1 \right)\].
For our given ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ and the point $ P\left( 3,4 \right) $ , the pair of tangents will be
$ \begin{align}
& \left( \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}-1 \right)\left( \dfrac{{{3}^{2}}}{9}+\dfrac{{{4}^{2}}}{4}-1 \right)={{\left( \dfrac{3x}{9}+\dfrac{4y}{4}-1 \right)}^{2}} \\
& \Rightarrow 4\left( \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}-1 \right)={{\left( \dfrac{x}{3}+y-1 \right)}^{2}} \\
\end{align} $
We solve the equations to get the lines
$ \begin{align}
& 4\left( \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}-1 \right)={{\left( \dfrac{x}{3}+y-1 \right)}^{2}} \\
& \Rightarrow \dfrac{4{{x}^{2}}}{9}+{{y}^{2}}-4=\dfrac{{{x}^{2}}}{9}+{{y}^{2}}+1+\dfrac{2xy}{3}-2y-\dfrac{2x}{3} \\
& \Rightarrow \dfrac{3{{x}^{2}}}{9}-\dfrac{2xy}{3}+2y+\dfrac{2x}{3}-5=0 \\
& \Rightarrow {{x}^{2}}-2xy+6y+2x-15=0 \\
& \Rightarrow \left( x-3 \right)\left( x-2y+5 \right)=0 \\
\end{align} $
We have multiplication of two equations as 0.
So, the lines are $ \left( x-3 \right)=0;\left( x-2y+5 \right)=0 $ . These lines are the tangents.
These lines touch the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ at points A and B. We find the points.
For the line $ \left( x-3 \right)=0 $ , we have $ x=3 $ . Therefore, $ \dfrac{{{3}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1\Rightarrow y=0 $ .
So, one point is $ A\equiv \left( 3,0 \right) $ .
For the line $ \left( x-2y+5 \right)=0 $ , we have $ x=2y-5 $ . Therefore,
$ \begin{align}
& \dfrac{{{\left( 2y-5 \right)}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 \\
& \Rightarrow 25{{y}^{2}}-80y+64=0 \\
& \Rightarrow y=\dfrac{80\pm \sqrt{{{80}^{2}}-4\times 25\times 64}}{2\times 25}=\dfrac{8}{5} \\
\end{align} $ .
Putting value of y, we get $ x=\dfrac{2\times 8}{5}-5=-\dfrac{9}{5} $
So, the other point is $ B\equiv \left( -\dfrac{9}{5},\dfrac{8}{5} \right) $ .
The points are $ \left( 3,0 \right) $ and $ \left( -\dfrac{9}{5},\dfrac{8}{5} \right) $ .
Now we find the orthocentre of the $ \Delta PAB $ .
As the line AP is vertical, the altitude through B is $ y=\dfrac{8}{5} $ . The orthocentre lies on the line $ y=\dfrac{8}{5} $ . The orthocentre of the $ \Delta PAB $ is $ \left( \dfrac{11}{5},\dfrac{8}{5} \right) $ as that is the only possible option of the given options.The correct option is C.
Note:
We need to remember that we can also solve this from the chord of contact points. We have the equation of chord of contact from the endpoints which are on the ellipse. We find the tangent equations from those points. Their intersecting point will be $ P\left( 3,4 \right) $ . The orthocentre is the point where all the three altitudes of the triangle cut or intersect each other.
We first describe the general condition of two tangents from a fixed point on an ellipse. We put the values for the point $ P\left( 3,4 \right) $ to the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ . We get the equations of the tangents. These lines touch the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ at points A and B. we find the intersecting points. Then using the vertical line of AP, we find the y-coordinate of the orthocentre.
Complete step by step answer:
Tangents are drawn from the point $ P\left( 3,4 \right) $ to the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ touching the ellipse at points A and B.
From a fixed point $ \left( m,n \right) $ in general two tangents can be drawn to an ellipse. The equation of pair of tangents drawn to the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is given by
$ \left( \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}-1 \right)\left( \dfrac{{{m}^{2}}}{{{a}^{2}}}+\dfrac{{{n}^{2}}}{{{b}^{2}}}-1 \right)={{\left( \dfrac{mx}{{{a}^{2}}}+\dfrac{ny}{{{b}^{2}}}-1 \right)}^{2}} $ .
In symbol we write $ S{{S}_{1}}={{T}^{2}} $ , where \[S=\left( \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}-1 \right),{{S}_{1}}=\left( \dfrac{{{m}^{2}}}{{{a}^{2}}}+\dfrac{{{n}^{2}}}{{{b}^{2}}}-1 \right),T=\left( \dfrac{mx}{{{a}^{2}}}+\dfrac{ny}{{{b}^{2}}}-1 \right)\].
For our given ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ and the point $ P\left( 3,4 \right) $ , the pair of tangents will be
$ \begin{align}
& \left( \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}-1 \right)\left( \dfrac{{{3}^{2}}}{9}+\dfrac{{{4}^{2}}}{4}-1 \right)={{\left( \dfrac{3x}{9}+\dfrac{4y}{4}-1 \right)}^{2}} \\
& \Rightarrow 4\left( \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}-1 \right)={{\left( \dfrac{x}{3}+y-1 \right)}^{2}} \\
\end{align} $
We solve the equations to get the lines
$ \begin{align}
& 4\left( \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}-1 \right)={{\left( \dfrac{x}{3}+y-1 \right)}^{2}} \\
& \Rightarrow \dfrac{4{{x}^{2}}}{9}+{{y}^{2}}-4=\dfrac{{{x}^{2}}}{9}+{{y}^{2}}+1+\dfrac{2xy}{3}-2y-\dfrac{2x}{3} \\
& \Rightarrow \dfrac{3{{x}^{2}}}{9}-\dfrac{2xy}{3}+2y+\dfrac{2x}{3}-5=0 \\
& \Rightarrow {{x}^{2}}-2xy+6y+2x-15=0 \\
& \Rightarrow \left( x-3 \right)\left( x-2y+5 \right)=0 \\
\end{align} $
We have multiplication of two equations as 0.
So, the lines are $ \left( x-3 \right)=0;\left( x-2y+5 \right)=0 $ . These lines are the tangents.
These lines touch the ellipse $ \dfrac{{{x}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 $ at points A and B. We find the points.
For the line $ \left( x-3 \right)=0 $ , we have $ x=3 $ . Therefore, $ \dfrac{{{3}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1\Rightarrow y=0 $ .
So, one point is $ A\equiv \left( 3,0 \right) $ .
For the line $ \left( x-2y+5 \right)=0 $ , we have $ x=2y-5 $ . Therefore,
$ \begin{align}
& \dfrac{{{\left( 2y-5 \right)}^{2}}}{9}+\dfrac{{{y}^{2}}}{4}=1 \\
& \Rightarrow 25{{y}^{2}}-80y+64=0 \\
& \Rightarrow y=\dfrac{80\pm \sqrt{{{80}^{2}}-4\times 25\times 64}}{2\times 25}=\dfrac{8}{5} \\
\end{align} $ .
Putting value of y, we get $ x=\dfrac{2\times 8}{5}-5=-\dfrac{9}{5} $
So, the other point is $ B\equiv \left( -\dfrac{9}{5},\dfrac{8}{5} \right) $ .
The points are $ \left( 3,0 \right) $ and $ \left( -\dfrac{9}{5},\dfrac{8}{5} \right) $ .
Now we find the orthocentre of the $ \Delta PAB $ .
As the line AP is vertical, the altitude through B is $ y=\dfrac{8}{5} $ . The orthocentre lies on the line $ y=\dfrac{8}{5} $ . The orthocentre of the $ \Delta PAB $ is $ \left( \dfrac{11}{5},\dfrac{8}{5} \right) $ as that is the only possible option of the given options.The correct option is C.
Note:
We need to remember that we can also solve this from the chord of contact points. We have the equation of chord of contact from the endpoints which are on the ellipse. We find the tangent equations from those points. Their intersecting point will be $ P\left( 3,4 \right) $ . The orthocentre is the point where all the three altitudes of the triangle cut or intersect each other.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE