Answer
Verified
488.4k+ views
Hint: Two circles are given. They will intersect at two points. We will draw the tangents from those two points. We have to find the point of intersection of those two tangents. The two intersection points form a common chord to both the circle.
Complete step-by-step answer:
The graphical representation of the given problem is similar to the below figure.
The given circles are ${x^2} + {y^2} = 12$ and ${x^2} + {y^2} - 5x + 3y - 2 = 0$. These two circles intersect at two points. Let those points be A and B.
${x^2} + {y^2} - 12 = 0$ ... (1)
${x^2} + {y^2} - 5x + 3y - 2 = 0$ ... (2)
Let the tangents passing through A and B meet at point P (h, k).
We need to find the coordinates of point P, i.e., h, k values.
The points A, B form a chord to both the circles. The line AB is the common chord to both the circles.
Equation of common chord to the given circles will be equation (1) – equation (2),
$ \Rightarrow ({x^2} + {y^2} - 12) - ({x^2} + {y^2} - 5x + 3y - 2) = 0$
On simplification, we get
$ \Rightarrow - 12 + 5x - 3y + 2 = 0$
$ \Rightarrow 5x - 3y - 10 = 0$ ... (3)
Therefore, the equation of the chord AB is $5x - 3y - 10 = 0$
Since AB is the point of contact with respect to P (h, k) for the circle ${x^2} + {y^2} - 12 = 0$.
$ \Rightarrow $Equation of the AB is $xh + yk - 12 = 0$ ... (4)
Comparing equation (3) and equation (4), we get
$\eqalign{
& \Rightarrow \dfrac{h}{5} = - \dfrac{k}{3} = \dfrac{{12}}{{10}} \cr
& \Rightarrow \dfrac{h}{5} = - \dfrac{k}{3} = \dfrac{6}{5} \cr} $
$ \Rightarrow h = 6,k = \dfrac{{ - 18}}{5}$
$\therefore $ The point of intersection of two tangents is P(h, k) = $\left( {6,\dfrac{{ - 18}}{5}} \right)$
Note: If the tangents drawn to the circle ${x^2} + {y^2} - {a^2} = 0$ at A and B meet at point P (h, k) , then AB will be the chord of contact of the tangents to that circle from P. Therefore the equation of AB will be $hx + ky - {a^2} = 0$. We compared equations (3), (4) because those two equations represent the same line. If two equations are representing the same line, then their coefficients must be proportional.
Complete step-by-step answer:
The graphical representation of the given problem is similar to the below figure.
The given circles are ${x^2} + {y^2} = 12$ and ${x^2} + {y^2} - 5x + 3y - 2 = 0$. These two circles intersect at two points. Let those points be A and B.
${x^2} + {y^2} - 12 = 0$ ... (1)
${x^2} + {y^2} - 5x + 3y - 2 = 0$ ... (2)
Let the tangents passing through A and B meet at point P (h, k).
We need to find the coordinates of point P, i.e., h, k values.
The points A, B form a chord to both the circles. The line AB is the common chord to both the circles.
Equation of common chord to the given circles will be equation (1) – equation (2),
$ \Rightarrow ({x^2} + {y^2} - 12) - ({x^2} + {y^2} - 5x + 3y - 2) = 0$
On simplification, we get
$ \Rightarrow - 12 + 5x - 3y + 2 = 0$
$ \Rightarrow 5x - 3y - 10 = 0$ ... (3)
Therefore, the equation of the chord AB is $5x - 3y - 10 = 0$
Since AB is the point of contact with respect to P (h, k) for the circle ${x^2} + {y^2} - 12 = 0$.
$ \Rightarrow $Equation of the AB is $xh + yk - 12 = 0$ ... (4)
Comparing equation (3) and equation (4), we get
$\eqalign{
& \Rightarrow \dfrac{h}{5} = - \dfrac{k}{3} = \dfrac{{12}}{{10}} \cr
& \Rightarrow \dfrac{h}{5} = - \dfrac{k}{3} = \dfrac{6}{5} \cr} $
$ \Rightarrow h = 6,k = \dfrac{{ - 18}}{5}$
$\therefore $ The point of intersection of two tangents is P(h, k) = $\left( {6,\dfrac{{ - 18}}{5}} \right)$
Note: If the tangents drawn to the circle ${x^2} + {y^2} - {a^2} = 0$ at A and B meet at point P (h, k) , then AB will be the chord of contact of the tangents to that circle from P. Therefore the equation of AB will be $hx + ky - {a^2} = 0$. We compared equations (3), (4) because those two equations represent the same line. If two equations are representing the same line, then their coefficients must be proportional.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE