Answer
Verified
442.8k+ views
Hint: This problem deals with determining the shape of the parabola, whether it is upwards or downwards. The general equation of a parabola is ${x^2} = 4ay$ where, its vertex is the origin and doesn’t have any intercepts, or $y = a{x^2} + bx + c$ where its vertex may not be the origin, and it has intercepts intersecting the coordinate axes.
Complete step-by-step answer:
We know that the general equation of the parabola is given by: $y = a{x^2} + bx + c$.
The given parabola is upwards, when $a > 0$ in $y = a{x^2} + bx + c$. In this case the vertex is the minimum, or lowest point of the parabola. A large positive value of a makes a narrow parabola; a positive value of a which is close to zero makes the parabola wide.
The given parabola is downwards, when $a < 0$ in $y = a{x^2} + bx + c$. In this case the parabola opens upwards.
The function of the coefficient $a$ in the general equation is to make the parabola wider or skinnier, or to turn it upside down, when $a < 0$, and when the coefficient of ${x^2}$ is positive, the parabola opens up, otherwise it opens down.
The parabola is upwards when $a > 0$ in $y = a{x^2} + bx + c$. The parabola is downwards when $a < 0$ in $y = a{x^2} + bx + c$.
Note:
Please note that the graph of a quadratic function is a U-shaped curve which is a parabola. The sign on the coefficient $a$ of the quadratic function affects whether the graph opens up or down. If $a < 0$, the graph makes a frown (opens down) and if $a > 0$ then the graph makes a smile (opens up).
Complete step-by-step answer:
We know that the general equation of the parabola is given by: $y = a{x^2} + bx + c$.
The given parabola is upwards, when $a > 0$ in $y = a{x^2} + bx + c$. In this case the vertex is the minimum, or lowest point of the parabola. A large positive value of a makes a narrow parabola; a positive value of a which is close to zero makes the parabola wide.
The given parabola is downwards, when $a < 0$ in $y = a{x^2} + bx + c$. In this case the parabola opens upwards.
The function of the coefficient $a$ in the general equation is to make the parabola wider or skinnier, or to turn it upside down, when $a < 0$, and when the coefficient of ${x^2}$ is positive, the parabola opens up, otherwise it opens down.
The parabola is upwards when $a > 0$ in $y = a{x^2} + bx + c$. The parabola is downwards when $a < 0$ in $y = a{x^2} + bx + c$.
Note:
Please note that the graph of a quadratic function is a U-shaped curve which is a parabola. The sign on the coefficient $a$ of the quadratic function affects whether the graph opens up or down. If $a < 0$, the graph makes a frown (opens down) and if $a > 0$ then the graph makes a smile (opens up).
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE