Answer
Verified
399.9k+ views
Hint: In this problem, we have to find the shape formed by the \[{{4}^{th}}\]roots of unity in the argand plane. We can first find what are the four roots and the angle between them and we can plot the roots in the argand plane to find the shape formed by the \[{{4}^{th}}\]roots of unity.
Complete step by step answer:
Here we have to find the shape formed by \[{{4}^{th}}\]roots of unity in the argand plane.
We can first find what are the four roots and the angle between them and we can plot the roots in the argand plane to find the shape formed by the \[{{4}^{th}}\]roots of unity.
We know that for \[{{4}^{th}}\]root of unity,
\[\begin{align}
& \Rightarrow x=\sqrt[4]{1} \\
& \Rightarrow {{x}^{4}}=1 \\
\end{align}\]
On solving this, we will get
\[\Rightarrow {{x}^{4}}=\cos \dfrac{2\pi }{4}k+i\sin \dfrac{2\pi }{4}k\]
Now we can substitute for the value of k, to find the roots.
Let k = 0, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 0 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=1+0=1\]
Let k = 1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 1 \right)+i\sin \dfrac{2\pi }{4}\left( 1 \right)=0+i\left( 1 \right)=i\]
Let k = 2, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 2 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=-1+0=-1\]
Let k = -1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( -1 \right)+i\sin \dfrac{2\pi }{4}\left( -1 \right)=0+i\left( -1 \right)=-i\]
Therefore, the fourth roots of unity are \[i,-i,1,-1\].
We can now see that the angle formed here is exactly \[{{90}^{\circ }}\].
We can now plot these roots in the argand plane, we get
Therefore, the fourth roots of unity form a square.
Note: We should always remember that the fourth roots of unity are \[i,-i,1,-1\] the angle formed here is exactly \[{{90}^{\circ }}\]. Therefore, after plotting, we can see that the fourth roots of unity form a square in the argand plane.
Complete step by step answer:
Here we have to find the shape formed by \[{{4}^{th}}\]roots of unity in the argand plane.
We can first find what are the four roots and the angle between them and we can plot the roots in the argand plane to find the shape formed by the \[{{4}^{th}}\]roots of unity.
We know that for \[{{4}^{th}}\]root of unity,
\[\begin{align}
& \Rightarrow x=\sqrt[4]{1} \\
& \Rightarrow {{x}^{4}}=1 \\
\end{align}\]
On solving this, we will get
\[\Rightarrow {{x}^{4}}=\cos \dfrac{2\pi }{4}k+i\sin \dfrac{2\pi }{4}k\]
Now we can substitute for the value of k, to find the roots.
Let k = 0, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 0 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=1+0=1\]
Let k = 1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 1 \right)+i\sin \dfrac{2\pi }{4}\left( 1 \right)=0+i\left( 1 \right)=i\]
Let k = 2, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( 2 \right)+i\sin \dfrac{2\pi }{4}\left( 0 \right)=-1+0=-1\]
Let k = -1, we get
\[\Rightarrow x=\cos \dfrac{2\pi }{4}\left( -1 \right)+i\sin \dfrac{2\pi }{4}\left( -1 \right)=0+i\left( -1 \right)=-i\]
Therefore, the fourth roots of unity are \[i,-i,1,-1\].
We can now see that the angle formed here is exactly \[{{90}^{\circ }}\].
We can now plot these roots in the argand plane, we get
Therefore, the fourth roots of unity form a square.
Note: We should always remember that the fourth roots of unity are \[i,-i,1,-1\] the angle formed here is exactly \[{{90}^{\circ }}\]. Therefore, after plotting, we can see that the fourth roots of unity form a square in the argand plane.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE