Answer
Verified
439.2k+ views
Hint: To determine the answer we should know the radioactive decay constant and half-life formula. We will substitute the half-life value in the radioactive decay constant formula and we will consider the initial concentration of radioactive nuclei as hundred percent. By substituting all values we can determine the age of mummy.
Complete step-by-step solution:
The relation between radioactive disintegration constant and half-life is as follows:
\[{{\text{t}}_{{\text{1/2}}}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{\lambda }\]
Where,
\[{{\text{t}}_{{\text{1/2}}}}\] is the half life
\[{\lambda }\] is the radioactive decay constant
The formula to determine the radioactive decay constant is as follows:
\[{\lambda }\,{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
Where,
\[{{\text{N}}_{\text{o}}}\]is the initial concentration of radioactive substance
\[{\text{N}}\]is the concentration of radioactive substance at time t.
On substituting the value of radioactive decay constant \[{\lambda }\]from half-life formula to radioactive decay constant formula we get,
\[\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{{\text{1/2}}}}}}{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
On rearranging the above formula for t we get,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}}{{\text{t}}_{{\text{1/2}}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
The rate of disintegration is given by,
$ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{ = \lambda N}$
At initially, the rate of disintegration of fresh sample of ${{\text{C}}^{{\text{14}}}}$ is $14$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For initial rate, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{o}}}\,\,{\text{ = }}\,{\text{14}}$….$(1)$
At initially, the rate of disintegration of sample of ${{\text{C}}^{{\text{14}}}}$ is $7$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For rate at half-life, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{t}}}\,\,{\text{ = }}\,7$…$(2)$
On dividing equation $(1)$ by$(2)$,
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,\dfrac{{14}}{7}$
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,2$
On substituting $2$for $\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}$and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 2\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
So, the age of mummy is \[{\text{5770}}\]year.
Note: If the initial concentration was $100$%. We know at the half-life the left concentration will be $50$%. On substituting $100$for \[{{\text{N}}_{\text{o}}}\], $50$for N and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log \dfrac{{100}}{{50}}\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
The radioactive reaction is a first-order reaction. The half-life of the radioactive reaction is inversely proportional to the radioactive decay constant. The half-life of radioactive reactions does not depend upon the initial concentration of radioactive nuclei.
Complete step-by-step solution:
The relation between radioactive disintegration constant and half-life is as follows:
\[{{\text{t}}_{{\text{1/2}}}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{\lambda }\]
Where,
\[{{\text{t}}_{{\text{1/2}}}}\] is the half life
\[{\lambda }\] is the radioactive decay constant
The formula to determine the radioactive decay constant is as follows:
\[{\lambda }\,{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
Where,
\[{{\text{N}}_{\text{o}}}\]is the initial concentration of radioactive substance
\[{\text{N}}\]is the concentration of radioactive substance at time t.
On substituting the value of radioactive decay constant \[{\lambda }\]from half-life formula to radioactive decay constant formula we get,
\[\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{{\text{1/2}}}}}}{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
On rearranging the above formula for t we get,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}}{{\text{t}}_{{\text{1/2}}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
The rate of disintegration is given by,
$ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{ = \lambda N}$
At initially, the rate of disintegration of fresh sample of ${{\text{C}}^{{\text{14}}}}$ is $14$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For initial rate, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{o}}}\,\,{\text{ = }}\,{\text{14}}$….$(1)$
At initially, the rate of disintegration of sample of ${{\text{C}}^{{\text{14}}}}$ is $7$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For rate at half-life, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{t}}}\,\,{\text{ = }}\,7$…$(2)$
On dividing equation $(1)$ by$(2)$,
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,\dfrac{{14}}{7}$
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,2$
On substituting $2$for $\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}$and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 2\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
So, the age of mummy is \[{\text{5770}}\]year.
Note: If the initial concentration was $100$%. We know at the half-life the left concentration will be $50$%. On substituting $100$for \[{{\text{N}}_{\text{o}}}\], $50$for N and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log \dfrac{{100}}{{50}}\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
The radioactive reaction is a first-order reaction. The half-life of the radioactive reaction is inversely proportional to the radioactive decay constant. The half-life of radioactive reactions does not depend upon the initial concentration of radioactive nuclei.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE