Answer
Verified
492.6k+ views
Hint: Here, we will use the formulas for AM, GM and HM of two numbers.
Let us suppose two numbers in any series be $a$and $b$
Given, ${\text{AM}} = {\text{GM}} = {\text{HM}}$
As we know that Arithmetic mean of two numbers $a$and $b$ is ${\text{AM}} = \dfrac{{a + b}}{2}$
Geometric mean of two numbers $a$and $b$ is ${\text{GM}} = \sqrt {ab} $
Harmonic mean of two numbers $a$and $b$ is ${\text{HM}} = \dfrac{{2ab}}{{a + b}}$
Now, consider ${\text{AM}} = {\text{GM}} \Rightarrow \dfrac{{a + b}}{2} = \sqrt {ab} $
Squaring above equation both sides we get
\[
\Rightarrow {\left( {\dfrac{{a + b}}{2}} \right)^2} = ab \Rightarrow \dfrac{{{a^2} + {b^2} + 2ab}}{4} = ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
\]
Now, consider $
{\text{AM}} = {\text{HM}} \Rightarrow \dfrac{{a + b}}{2} = \dfrac{{2ab}}{{a + b}} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Now, consider ${\text{GM}} = {\text{HM}} \Rightarrow \sqrt {ab} = \dfrac{{2ab}}{{a + b}} \Rightarrow \left( {a + b} \right)\sqrt {ab} = 2ab$
Squaring above equation both sides we get
$
\Rightarrow ab{\left( {a + b} \right)^2} = {\left( {2ab} \right)^2} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} - 2ab = 0 \\
\Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Hence, considering all the possibilities we are always getting that both the numbers in the given series are equal to each other. So, in general we can say that all the values are equal in the series where ${\text{AM}} = {\text{GM}} = {\text{HM}}$.
Therefore, option B is correct.
Note- In these types of problems, we consider any two numbers and apply the formulas for AM, GM and HM in order to find the relation between the assumed numbers.
Let us suppose two numbers in any series be $a$and $b$
Given, ${\text{AM}} = {\text{GM}} = {\text{HM}}$
As we know that Arithmetic mean of two numbers $a$and $b$ is ${\text{AM}} = \dfrac{{a + b}}{2}$
Geometric mean of two numbers $a$and $b$ is ${\text{GM}} = \sqrt {ab} $
Harmonic mean of two numbers $a$and $b$ is ${\text{HM}} = \dfrac{{2ab}}{{a + b}}$
Now, consider ${\text{AM}} = {\text{GM}} \Rightarrow \dfrac{{a + b}}{2} = \sqrt {ab} $
Squaring above equation both sides we get
\[
\Rightarrow {\left( {\dfrac{{a + b}}{2}} \right)^2} = ab \Rightarrow \dfrac{{{a^2} + {b^2} + 2ab}}{4} = ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
\]
Now, consider $
{\text{AM}} = {\text{HM}} \Rightarrow \dfrac{{a + b}}{2} = \dfrac{{2ab}}{{a + b}} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} + 2ab = 4ab \\
\Rightarrow {a^2} + {b^2} - 2ab = 0 \Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Now, consider ${\text{GM}} = {\text{HM}} \Rightarrow \sqrt {ab} = \dfrac{{2ab}}{{a + b}} \Rightarrow \left( {a + b} \right)\sqrt {ab} = 2ab$
Squaring above equation both sides we get
$
\Rightarrow ab{\left( {a + b} \right)^2} = {\left( {2ab} \right)^2} \Rightarrow {\left( {a + b} \right)^2} = 4ab \Rightarrow {a^2} + {b^2} - 2ab = 0 \\
\Rightarrow {\left( {a - b} \right)^2} = 0 \Rightarrow a = b \\
$
Hence, considering all the possibilities we are always getting that both the numbers in the given series are equal to each other. So, in general we can say that all the values are equal in the series where ${\text{AM}} = {\text{GM}} = {\text{HM}}$.
Therefore, option B is correct.
Note- In these types of problems, we consider any two numbers and apply the formulas for AM, GM and HM in order to find the relation between the assumed numbers.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE