Answer
Verified
397.5k+ views
Hint :From the dimension of energy and mass find the expression for specific heat using dimensional analysis.The specific heat capacity is the proportionality constant and its value depends on the nature of the substance.
Complete Step By Step Answer:
We have given here that, the amount of heat energy is proportional to the mass of the substance, change in temperature of the substance and it is proportional to the specific heat of the substance.
So, let the heat energy of used is related to the mass of the substance as, $ Q \propto {m^x} $
it is related to the change in temperature as, $ Q \propto \Delta {T^y} $
and it is related to specific heat of the substance as, $ Q \propto {S^z} $
So, we can write from the theorem of complex proportionality,
$ Q \propto {m^x}{(\Delta T)^y}{S^z} $
$ Q = k{m^x}{(\Delta T)^y}{S^z} $ where, $ k $ is dimensionless constant.
Now, we know from dimensional analysis, the dimension of the right hand side of the equation and the left hand side of the equation will be the same.
Now, dimension of heat energy is equal to dimension of energy, $ [Q] = [E] = [M{L^2}{T^{ - 2}}] $ and it is given that, $ \left[ S \right] = \left[ {{L^2}{T^{ - 2}}{K^{ - 1}}} \right] $
So, we can write from dimensional analysis, $ [M{L^2}{T^{ - 2}}] = [{M^x}][{K^y}][{L^{2z}}{T^{ - 2z}}{K^{ - 1z}}] $
Or, $ [M{L^2}{T^{ - 2}}] = [{M^x}{L^{2z}}{T^{ - 2z}}{K^{y - z}}] $
Hence, comparing the power of both sides we can write, $ x = 1 $ ,
$ 2z = 2 $
Or, $ z = 1 $
$ y - z = 0 $
Or, $ y = z $
So, $ y = 1 $
Hence, we get the heat absorbed as, $ Q = {m^1}{(\Delta T)^1}{S^1} $ taking the value of constant coefficient as $ k = 1 $ for convenience.
Or, $ Q = m(\Delta T)S $
So, the expression of specific heat capacity becomes, $ S = \dfrac{Q}{{m(\Delta T)}} $
Hence, option (B ) is correct.
Note :
Here, we have taken the value of the dimensionless quantity one as per our convenience. The heat absorbed by a substance is directly proportional to the mass of the object and change in temperature.
Complete Step By Step Answer:
We have given here that, the amount of heat energy is proportional to the mass of the substance, change in temperature of the substance and it is proportional to the specific heat of the substance.
So, let the heat energy of used is related to the mass of the substance as, $ Q \propto {m^x} $
it is related to the change in temperature as, $ Q \propto \Delta {T^y} $
and it is related to specific heat of the substance as, $ Q \propto {S^z} $
So, we can write from the theorem of complex proportionality,
$ Q \propto {m^x}{(\Delta T)^y}{S^z} $
$ Q = k{m^x}{(\Delta T)^y}{S^z} $ where, $ k $ is dimensionless constant.
Now, we know from dimensional analysis, the dimension of the right hand side of the equation and the left hand side of the equation will be the same.
Now, dimension of heat energy is equal to dimension of energy, $ [Q] = [E] = [M{L^2}{T^{ - 2}}] $ and it is given that, $ \left[ S \right] = \left[ {{L^2}{T^{ - 2}}{K^{ - 1}}} \right] $
So, we can write from dimensional analysis, $ [M{L^2}{T^{ - 2}}] = [{M^x}][{K^y}][{L^{2z}}{T^{ - 2z}}{K^{ - 1z}}] $
Or, $ [M{L^2}{T^{ - 2}}] = [{M^x}{L^{2z}}{T^{ - 2z}}{K^{y - z}}] $
Hence, comparing the power of both sides we can write, $ x = 1 $ ,
$ 2z = 2 $
Or, $ z = 1 $
$ y - z = 0 $
Or, $ y = z $
So, $ y = 1 $
Hence, we get the heat absorbed as, $ Q = {m^1}{(\Delta T)^1}{S^1} $ taking the value of constant coefficient as $ k = 1 $ for convenience.
Or, $ Q = m(\Delta T)S $
So, the expression of specific heat capacity becomes, $ S = \dfrac{Q}{{m(\Delta T)}} $
Hence, option (B ) is correct.
Note :
Here, we have taken the value of the dimensionless quantity one as per our convenience. The heat absorbed by a substance is directly proportional to the mass of the object and change in temperature.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE