
The angle of banking θ for a cyclist taking curve is given by , where symbols ( =speed of the cyclist, = radius of the curved path, = acceleration due to gravity) have their usual meanings. Then the value of n is equal to
A. 1
B. 3
C. 2
D. 4
Answer
500.4k+ views
Hint: The appropriate value for n used in the expression can be calculated with the help of (FBD) free body diagram of the cyclist which is taking turns on the banked road. After that, we apply Newton’s second law to establish the equations of motion for the cyclist along the vertical. Then analyze each component of forces acting on the cyclist separately to get the required value for n.
Complete step by step solution:
Applying Newton’s second law of motion along both the vertical and horizontal axis as:
Equation of motion along horizontal direction:
…… (i)
Equation of motion along vertical direction:
………. (ii)
Divide equation (ii) by equation (ii), we get
……………..(iii)
Since we have given that-
…………(iv)
On comparing both equation (iii) and equation (iv), we get
The required value of . Hence, option (C) is the correct answer.
Note:
In order to tackle these kinds of conceptual questions we should have knowledge of drawing FBD (Free Body Diagram) of a dynamic system and also know how to implement Newton’s second law motion for solving problems on Newton’s law. Banking of roads is developed on turning to avoid the dependence of friction.
From the equation (iii), we can also establish the expression that relates banking angle and radius with speed for a cyclist taking a curve on the banked road as-
This is actually a speed at which the cyclist does not slide down even the inclined surface is smooth. But there is some limiting value to stay on the same path while taking a turn:
(i) When the speed of the cyclist less than the speed the cycle will move down while
(ii) When the speed of the cyclist is less than the speed the cycle will move up to the inclined.
Complete step by step solution:
Applying Newton’s second law of motion along both the vertical and horizontal axis as:

Equation of motion along horizontal direction:
Equation of motion along vertical direction:
Divide equation (ii) by equation (ii), we get
Since we have given that-
On comparing both equation (iii) and equation (iv), we get
Note:
In order to tackle these kinds of conceptual questions we should have knowledge of drawing FBD (Free Body Diagram) of a dynamic system and also know how to implement Newton’s second law motion for solving problems on Newton’s law. Banking of roads is developed on turning to avoid the dependence of friction.
From the equation (iii), we can also establish the expression that relates banking angle and radius with speed for a cyclist taking a curve on the banked road as-
This is actually a speed at which the cyclist does not slide down even the inclined surface is smooth. But there is some limiting value to stay on the same path while taking a turn:
(i) When the speed of the cyclist less than the speed
(ii) When the speed of the cyclist is less than the speed
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
