
The angle of elevation of the top of a building from the foot of the tower is ${30^ \circ }$ and the angle of elevation of the top of the tower from the foot of the building is ${60^ \circ }$. If the tower is 50 m high, find the height of the building.
Answer
624.6k+ views
Hint- Here, the concept of right triangle is used along with the help of some trigonometric functions.
Complete step by step answer:
Complete step by step answer:
Let us suppose a building AB of height $h$ meters and a tower CD of height 50 meters.
Given, the angle of elevation of the top of a building from the foot of the tower is $\theta = {30^ \circ }$
Also, given that the angle of elevation of the top of the tower from the foot of the building is $\alpha = {60^ \circ }$
From the figure, we can say that there are two right-angled triangles i.e., $\Delta {\text{ABC}}$ and $\Delta {\text{BCD}}$.
In right-angled $\Delta {\text{ABC}}$, we have
$\tan \theta = \dfrac{h}{{{\text{BC}}}} \Rightarrow \tan {30^ \circ } = \dfrac{h}{{{\text{BC}}}} \Rightarrow {\text{BC}} = \dfrac{h}{{\tan {{30}^ \circ }}}$
As, $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $\tan {60^ \circ } = \sqrt 3 $
$\therefore {\text{BC}} = \dfrac{h}{{\dfrac{1}{{\sqrt 3 }}}} = h\sqrt 3 $
Also, In right-angled $\Delta {\text{BCD}}$, we have
$\tan \alpha = \dfrac{{50}}{{{\text{BC}}}} \Rightarrow \tan {60^ \circ } = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow \sqrt 3 = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow h = \dfrac{{50}}{{{{\left( {\sqrt 3 } \right)}^2}}} = \dfrac{{50}}{3}$
Therefore, the height of the building is $\dfrac{{50}}{3}$ meters.
Note- In any right angle triangle, the hypotenuse is the side opposite to right angle, the perpendicular is the side opposite to the considered acute angle and base is the left side. Also, trigonometric function $\tan \theta $ is the ratio of the perpendicular to the hypotenuse in the right triangle.
Given, the angle of elevation of the top of a building from the foot of the tower is $\theta = {30^ \circ }$
Also, given that the angle of elevation of the top of the tower from the foot of the building is $\alpha = {60^ \circ }$
From the figure, we can say that there are two right-angled triangles i.e., $\Delta {\text{ABC}}$ and $\Delta {\text{BCD}}$.
In right-angled $\Delta {\text{ABC}}$, we have
$\tan \theta = \dfrac{h}{{{\text{BC}}}} \Rightarrow \tan {30^ \circ } = \dfrac{h}{{{\text{BC}}}} \Rightarrow {\text{BC}} = \dfrac{h}{{\tan {{30}^ \circ }}}$
As, $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $\tan {60^ \circ } = \sqrt 3 $
$\therefore {\text{BC}} = \dfrac{h}{{\dfrac{1}{{\sqrt 3 }}}} = h\sqrt 3 $
Also, In right-angled $\Delta {\text{BCD}}$, we have
$\tan \alpha = \dfrac{{50}}{{{\text{BC}}}} \Rightarrow \tan {60^ \circ } = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow \sqrt 3 = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow h = \dfrac{{50}}{{{{\left( {\sqrt 3 } \right)}^2}}} = \dfrac{{50}}{3}$
Therefore, the height of the building is $\dfrac{{50}}{3}$ meters.
Note- In any right angle triangle, the hypotenuse is the side opposite to right angle, the perpendicular is the side opposite to the considered acute angle and base is the left side. Also, trigonometric function $\tan \theta $ is the ratio of the perpendicular to the hypotenuse in the right triangle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

