Answer
Verified
491.4k+ views
Hint: Analyze the situation with a diagram. Use trigonometric ratios to find the distance of point P from the foot of the tower in both cases. And then compare both values to get the desired result.
Complete step-by-step answer:
Consider the above figure, let L be the initial distance of the foot of the tower from point P and h be the height of the tower.
As per the information given in the question, $\alpha $ is the angle of elevation of the top of the tower from point P.
From $\Delta PRS$ shown above:
$
\Rightarrow \tan \alpha = \dfrac{{SR}}{{PR}} \\
\Rightarrow \tan \alpha = \dfrac{h}{L} \\
\Rightarrow L = \dfrac{h}{{\tan \alpha }} .....(i) \\
$
Now, after moving 2 meters towards the tower we reach another point Q. Then the distance between the foot of the tower and point Q is $L - 2$. And the angle of elevation of the top of the tower from point Q is given in the question as $\beta $. So in $\Delta QSR$ in the above figure:
$
\Rightarrow \tan \beta = \dfrac{{SR}}{{QR}} \\
\Rightarrow \tan \beta = \dfrac{h}{{L - 2}}, \\
\Rightarrow L - 2 = \dfrac{h}{{\tan \beta }}, \\
\Rightarrow L = \dfrac{h}{{\tan \beta }} + 2 .....(ii) \\
$
Now, comparing equation $(i)$ and $(ii)$, we have:
$
\Rightarrow \dfrac{h}{{\tan \alpha }} = \dfrac{h}{{\tan \beta }} + 2, \\
\Rightarrow h\left( {\dfrac{1}{{\tan \alpha }} - \dfrac{1}{{\tan \beta }}} \right) = 2, \\
$
Taking $\tan \alpha \tan \beta $ as LCM, we’ll get:
$
\Rightarrow h\left( {\dfrac{{\tan \alpha - \tan \beta }}{{\tan \alpha \tan \beta }}} \right) = 2, \\
\Rightarrow h = \dfrac{{2\tan \alpha \tan \beta }}{{\tan \alpha - \tan \beta }} \\
$
Now we know that, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, applying this we’ll get:
\[
\Rightarrow h = \dfrac{{2 \times \dfrac{{\sin \alpha }}{{\cos \alpha }} \times \dfrac{{\sin \beta }}{{\cos \beta }}}}{{\dfrac{{\sin \alpha }}{{\cos \alpha }} - \dfrac{{\sin \beta }}{{\cos \beta }}}}, \\
\Rightarrow h = \dfrac{{2 \times \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}{{\dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}, \\
\Rightarrow h = \dfrac{{2\sin \alpha \sin \beta }}{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }} \\
\]
We know that, $\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$, applying this formula, we’ll get:
\[ \Rightarrow h = \dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\alpha - \beta } \right)}}\]
Therefore, the height of the tower is \[\dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\alpha - \beta } \right)}}\]. Option (C) is correct.
Note: We can use any of the trigonometric ratios to get the end results. But in this case, perpendicular and base are known for the given angles so it is convenient to use either $\tan \theta {\text{ or }}\cot \theta $. If we want to use any other trigonometric ratios, then we have to determine hypotenuse first by using Pythagoras theorem.
Complete step-by-step answer:
Consider the above figure, let L be the initial distance of the foot of the tower from point P and h be the height of the tower.
As per the information given in the question, $\alpha $ is the angle of elevation of the top of the tower from point P.
From $\Delta PRS$ shown above:
$
\Rightarrow \tan \alpha = \dfrac{{SR}}{{PR}} \\
\Rightarrow \tan \alpha = \dfrac{h}{L} \\
\Rightarrow L = \dfrac{h}{{\tan \alpha }} .....(i) \\
$
Now, after moving 2 meters towards the tower we reach another point Q. Then the distance between the foot of the tower and point Q is $L - 2$. And the angle of elevation of the top of the tower from point Q is given in the question as $\beta $. So in $\Delta QSR$ in the above figure:
$
\Rightarrow \tan \beta = \dfrac{{SR}}{{QR}} \\
\Rightarrow \tan \beta = \dfrac{h}{{L - 2}}, \\
\Rightarrow L - 2 = \dfrac{h}{{\tan \beta }}, \\
\Rightarrow L = \dfrac{h}{{\tan \beta }} + 2 .....(ii) \\
$
Now, comparing equation $(i)$ and $(ii)$, we have:
$
\Rightarrow \dfrac{h}{{\tan \alpha }} = \dfrac{h}{{\tan \beta }} + 2, \\
\Rightarrow h\left( {\dfrac{1}{{\tan \alpha }} - \dfrac{1}{{\tan \beta }}} \right) = 2, \\
$
Taking $\tan \alpha \tan \beta $ as LCM, we’ll get:
$
\Rightarrow h\left( {\dfrac{{\tan \alpha - \tan \beta }}{{\tan \alpha \tan \beta }}} \right) = 2, \\
\Rightarrow h = \dfrac{{2\tan \alpha \tan \beta }}{{\tan \alpha - \tan \beta }} \\
$
Now we know that, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, applying this we’ll get:
\[
\Rightarrow h = \dfrac{{2 \times \dfrac{{\sin \alpha }}{{\cos \alpha }} \times \dfrac{{\sin \beta }}{{\cos \beta }}}}{{\dfrac{{\sin \alpha }}{{\cos \alpha }} - \dfrac{{\sin \beta }}{{\cos \beta }}}}, \\
\Rightarrow h = \dfrac{{2 \times \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}{{\dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}, \\
\Rightarrow h = \dfrac{{2\sin \alpha \sin \beta }}{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }} \\
\]
We know that, $\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$, applying this formula, we’ll get:
\[ \Rightarrow h = \dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\alpha - \beta } \right)}}\]
Therefore, the height of the tower is \[\dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\alpha - \beta } \right)}}\]. Option (C) is correct.
Note: We can use any of the trigonometric ratios to get the end results. But in this case, perpendicular and base are known for the given angles so it is convenient to use either $\tan \theta {\text{ or }}\cot \theta $. If we want to use any other trigonometric ratios, then we have to determine hypotenuse first by using Pythagoras theorem.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life