Answer
Verified
483.9k+ views
Hint:Use the fact that if the angle of rotational symmetry is $\theta $, then the order of rotational symmetry is $\left[ \dfrac{360}{\theta } \right]$, where [x] denotes the greatest integer less or equal to x. Put $\theta =60$ and hence find the order of rotational symmetry of the shape.
Complete step-by-step answer:
Consider an object with the angle of rotational symmetry as x.
Hence, if we rotate the object by x degrees, the shape will remain unchanged.
Now, if we rotate the rotated image again by x degrees, again the net-shape will remain unchanged.
Hence if we rotate the original shape by 2x degrees, the shape will remain unchanged.
Continuing this way if we rotate the image by nx degrees, where n is a natural number, then the shape will remain unchanged.
Now, we know that the order of rotational symmetry of the shape is the number of times it can be rotated around a circle and still look the same.
Let the above shape be rotated n times and still look the same in a complete rotation.
Hence, we have
$nx\le 360 < \left( n+1 \right)x$
Dividing both sides by x, we get
$n\le \dfrac{360}{x} < n+1$
Hence, we have
$\left[ \dfrac{360}{x} \right]=n$(From the definition of the greatest integer function)
Hence, the order of the rotational symmetry, when the rotational angle of symmetry is $60{}^\circ $ is $\left[ \dfrac{360}{60} \right]=6$
Hence option [a] is correct.
Note: Verification:
A figure with a rotational angle of symmetry as 60 degrees is a regular hexagon.
Rotating clockwise by 60 degrees gives the following hexagon
Clearly, the shape remains the same.
We can do the above process 4 more times till a complete rotation is achieved.
Hence the order of rotational symmetry is 6
Complete step-by-step answer:
Consider an object with the angle of rotational symmetry as x.
Hence, if we rotate the object by x degrees, the shape will remain unchanged.
Now, if we rotate the rotated image again by x degrees, again the net-shape will remain unchanged.
Hence if we rotate the original shape by 2x degrees, the shape will remain unchanged.
Continuing this way if we rotate the image by nx degrees, where n is a natural number, then the shape will remain unchanged.
Now, we know that the order of rotational symmetry of the shape is the number of times it can be rotated around a circle and still look the same.
Let the above shape be rotated n times and still look the same in a complete rotation.
Hence, we have
$nx\le 360 < \left( n+1 \right)x$
Dividing both sides by x, we get
$n\le \dfrac{360}{x} < n+1$
Hence, we have
$\left[ \dfrac{360}{x} \right]=n$(From the definition of the greatest integer function)
Hence, the order of the rotational symmetry, when the rotational angle of symmetry is $60{}^\circ $ is $\left[ \dfrac{360}{60} \right]=6$
Hence option [a] is correct.
Note: Verification:
A figure with a rotational angle of symmetry as 60 degrees is a regular hexagon.
Rotating clockwise by 60 degrees gives the following hexagon
Clearly, the shape remains the same.
We can do the above process 4 more times till a complete rotation is achieved.
Hence the order of rotational symmetry is 6
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India