
The angles $\alpha ,\beta ,\lambda $ of a triangle satisfy the equations $2\sin \alpha + 3\cos \beta = 3\sqrt 2 $ and $3\sin \beta + 2\cos \alpha = 1$. Then angle $\lambda $ equals to?
Answer
622.2k+ views
Hint: Use the property $\left( {\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)} \right)$ and $\left( {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1} \right)$.
As you know in triangle, the sum of all the internal angles is equal to $180^\circ $.
$ \Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$
2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\
3\sin \beta + 2\cos \alpha = 1 \\
$
Now squaring on both sides of the given equations
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
= 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
= 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\
$
Now add equations 2 and 3
$
\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
= 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\
= 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
= 2\sin \left( {\alpha + \beta } \right) = 1 \\
= \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
$
Now from equation 1
$
\alpha + \beta = 180^\circ - \lambda \\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
\Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\
$
Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ $
$
\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\
\Rightarrow \lambda = 30^\circ \\
$
which is the required value of $\lambda $.
Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ $. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.
As you know in triangle, the sum of all the internal angles is equal to $180^\circ $.
$ \Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$
2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\
3\sin \beta + 2\cos \alpha = 1 \\
$
Now squaring on both sides of the given equations
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
= 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
= 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\
$
Now add equations 2 and 3
$
\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
= 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\
= 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
= 2\sin \left( {\alpha + \beta } \right) = 1 \\
= \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
$
Now from equation 1
$
\alpha + \beta = 180^\circ - \lambda \\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
\Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\
$
Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ $
$
\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\
\Rightarrow \lambda = 30^\circ \\
$
which is the required value of $\lambda $.
Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ $. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

