Answer
Verified
469.8k+ views
Hint:Using the knowledge of the properties of a triangle and A.P. we will approach the solution to our problem. Using properties like
1) the sum of all angles of a triangle is \[180^\circ \]
2) common difference of consecutive terms of an A.P. remains constant.
3) ${1^o} = \dfrac{\pi }{{180}}radians$
we will form equations to solve for the required quantity.
Complete step by step answer:
Given data: The angles of a triangle are in A.P.
\[\dfrac{{least{\text{ }}angle(in{\text{ }}\deg rees)}}{{greatest{\text{ }}angle(in{\text{ }}radians)}} = \dfrac{{60}}{\pi }\]
Now, let us assume that the angles be x, y and z where \[\left( {x < y < z} \right)\]
From the above assumption, we can say that,
‘x’ is the least angle and ‘z’ is the greatest angle
Since x, y and z are in A.P., the common difference remain constant i.e.,
$
y - x = z - y \\
\Rightarrow 2y = x + z....................(i) \\
$
It is also given that,
\[\dfrac{{least{\text{ }}angle(in{\text{ }}\deg rees)}}{{greatest{\text{ }}angle(in{\text{ }}radians)}} = \dfrac{{60}}{\pi }\]
On using the fact that ${1^o} = \dfrac{\pi }{{180}}radians$, we get,
$\dfrac{x}{{z(\dfrac{\pi }{{180}})}} = \dfrac{{60}}{\pi }$
$
\Rightarrow x = z(\dfrac{\pi }{{180}})\dfrac{{60}}{\pi } \\
\Rightarrow x = \dfrac{z}{3}...........................(ii) \\
$
We also that sum of all angles of a triangle is \[180^\circ \] i.e.,
$x + y + z = {180^o}.................(iii)$
From equation (i) and (ii), we get,
$
2y = \dfrac{z}{3} + z \\
\Rightarrow 2y = \dfrac{{4z}}{3} \\
\Rightarrow y = \dfrac{{2z}}{3} \\
$
Now putting the value of ‘x’ and ‘y’ in equation(iii), we get,
$
\Rightarrow \dfrac{z}{3} + \dfrac{{2z}}{3} + z = {180^o} \\
\Rightarrow \dfrac{{z + 2z + 3z}}{3} = {180^o} \\
On{\text{ }}Further{\text{ }}simplification{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{{6z}}{3} = {180^o} \\
\Rightarrow 2z = {180^o} \\
\Rightarrow z = {90^o} \\
$
From the assumption we made it is clear that ‘z’ is the greatest angle of the triangle i.e. \[{90^o}\]
Hence, the correct option is (B).
Note: While writing the ratio given as per the question do not forget to convert the greatest angle in radians as if not done the answer will not match the correct option
Additional information: In any triangle, an angle comes out to be right angle then it will be the greatest angle as no other angle comes out to be greater than 90° , as the sum of angles will exceed \[180^\circ \]which is not possible.
1) the sum of all angles of a triangle is \[180^\circ \]
2) common difference of consecutive terms of an A.P. remains constant.
3) ${1^o} = \dfrac{\pi }{{180}}radians$
we will form equations to solve for the required quantity.
Complete step by step answer:
Given data: The angles of a triangle are in A.P.
\[\dfrac{{least{\text{ }}angle(in{\text{ }}\deg rees)}}{{greatest{\text{ }}angle(in{\text{ }}radians)}} = \dfrac{{60}}{\pi }\]
Now, let us assume that the angles be x, y and z where \[\left( {x < y < z} \right)\]
From the above assumption, we can say that,
‘x’ is the least angle and ‘z’ is the greatest angle
Since x, y and z are in A.P., the common difference remain constant i.e.,
$
y - x = z - y \\
\Rightarrow 2y = x + z....................(i) \\
$
It is also given that,
\[\dfrac{{least{\text{ }}angle(in{\text{ }}\deg rees)}}{{greatest{\text{ }}angle(in{\text{ }}radians)}} = \dfrac{{60}}{\pi }\]
On using the fact that ${1^o} = \dfrac{\pi }{{180}}radians$, we get,
$\dfrac{x}{{z(\dfrac{\pi }{{180}})}} = \dfrac{{60}}{\pi }$
$
\Rightarrow x = z(\dfrac{\pi }{{180}})\dfrac{{60}}{\pi } \\
\Rightarrow x = \dfrac{z}{3}...........................(ii) \\
$
We also that sum of all angles of a triangle is \[180^\circ \] i.e.,
$x + y + z = {180^o}.................(iii)$
From equation (i) and (ii), we get,
$
2y = \dfrac{z}{3} + z \\
\Rightarrow 2y = \dfrac{{4z}}{3} \\
\Rightarrow y = \dfrac{{2z}}{3} \\
$
Now putting the value of ‘x’ and ‘y’ in equation(iii), we get,
$
\Rightarrow \dfrac{z}{3} + \dfrac{{2z}}{3} + z = {180^o} \\
\Rightarrow \dfrac{{z + 2z + 3z}}{3} = {180^o} \\
On{\text{ }}Further{\text{ }}simplification{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{{6z}}{3} = {180^o} \\
\Rightarrow 2z = {180^o} \\
\Rightarrow z = {90^o} \\
$
From the assumption we made it is clear that ‘z’ is the greatest angle of the triangle i.e. \[{90^o}\]
Hence, the correct option is (B).
Note: While writing the ratio given as per the question do not forget to convert the greatest angle in radians as if not done the answer will not match the correct option
Additional information: In any triangle, an angle comes out to be right angle then it will be the greatest angle as no other angle comes out to be greater than 90° , as the sum of angles will exceed \[180^\circ \]which is not possible.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE