Answer
Verified
463.2k+ views
Hint: The given angular diameter is a measure of angle between ends of sun and it’s measured from some point on earth. As we have given an angular diameter which is equal to the diameter of sun divided by distance between the sun and earth. Diameter of sun is arc length of circle with radius equal to distance between sun and earth and angle of arc is equal to angular diameter of earth.
Complete step by step answer:
Given the angular diameter of the sun is $1920''$ and distance R between sun and earth is $1.496 \times {10^{11}}m$.
Angular diameter in radian is \[\theta = \dfrac{{1920}}{{3600}} \times \dfrac{\pi }{{180}}rad\] ( ${1^o} = 60'$ and $1' = 60''$).
$\theta = 0.0093rad$
As shown in figure, diameter of sun D is arc length of circle with radius equal to distance between sun and earth and angle for arc is $1920''$.
Then $D = \theta \times R$
$D = 0.0093 \times 1.496 \times {10^{11}} = 1.39 \times {10^9}m$
Hence the diameter of the sun is $1.39 \times {10^9}m$.
Note: Here angle $\theta $ is too small that we consider arc as line that why it gives us the more accurate diameter of sun. Here we use $D = \theta \times R$ because for too small an angle in radian, angle is equal to ratio of arc length and radius of circle. As we know that earth revolves around the sun elliptical orbit which means the distance of the earth changes with time but given reading are such that angle is measured when earth is at given distance. If we measure angle at different time distance change and angle also changes such our answer remains the same for each case.
Complete step by step answer:
Given the angular diameter of the sun is $1920''$ and distance R between sun and earth is $1.496 \times {10^{11}}m$.
Angular diameter in radian is \[\theta = \dfrac{{1920}}{{3600}} \times \dfrac{\pi }{{180}}rad\] ( ${1^o} = 60'$ and $1' = 60''$).
$\theta = 0.0093rad$
As shown in figure, diameter of sun D is arc length of circle with radius equal to distance between sun and earth and angle for arc is $1920''$.
Then $D = \theta \times R$
$D = 0.0093 \times 1.496 \times {10^{11}} = 1.39 \times {10^9}m$
Hence the diameter of the sun is $1.39 \times {10^9}m$.
Note: Here angle $\theta $ is too small that we consider arc as line that why it gives us the more accurate diameter of sun. Here we use $D = \theta \times R$ because for too small an angle in radian, angle is equal to ratio of arc length and radius of circle. As we know that earth revolves around the sun elliptical orbit which means the distance of the earth changes with time but given reading are such that angle is measured when earth is at given distance. If we measure angle at different time distance change and angle also changes such our answer remains the same for each case.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life