Answer
Verified
462k+ views
Hint: We are given the angular momentum L and the rate of change of angular momentum should give us torque. Find the way of converting the given direction of its motion into a vector then use the torque formula to find the force.
Formula used:
The rate of change of angular momentum is torque:
$\tau = \dfrac{dL}{dt}$.
Torque acting on a body is also given by relation:
$\vec{\tau} = \vec{r} \times \vec{F}$.
Complete answer:
For the given particle, we have the angular momentum L = 4t + 8. This means that it is changing with time because as the value of t changes, L changes too. Therefore, the rate of change of angular momentum becomes:
$\tau = \dfrac{dL}{dt} = \dfrac{d(4t + 8)}{dt} = 4$.
This means that the magnitude of torque is 4 units.
Now, the particle happens to be moving along a straight line y = x -4. This means that the position of the particle at any point is given by this equation. So, we can find the vector from the origin in the following manner:
1. Finding any two points that satisfy the equation for this line along which the particle moves. If we keep x = 0 we get y = - 4. If we keep x = 2, we get y = -2.
2. Now, our required vector will be joining these two points so, the vector going from (0, -4) to (2, -2) can be written as:
$\vec{r} = (2-0) \hat{i} + (-2 - (-4)) \hat{j} = 2 \hat{i} + 2 \hat{j} $.
The magnitude of this vector can be written as:
$r = \sqrt{2^2 +2^2} = 2\sqrt{2}$.
The magnitude of torque can be written simply as:
$\tau = rF$,
where F is the magnitude of force acting and r is the perpendicular distance from the axis.
So, we may write:
$F = \dfrac{\tau}{r} = \dfrac{4}{2\sqrt{2}} = \sqrt{2}$N.
So, the correct answer is “Option C”.
Note:
The tricky part in the question is to find out the vector $vec{r}$, which is supposed to be the distance perpendicular to which the force is acting. Also, as the question says 'angular momentum is varying as L = 4t + 8', one might assume that this is the rate of change of angular momentum but clearly as it is written in terms of L it is the expression for angular momentum itself.
Formula used:
The rate of change of angular momentum is torque:
$\tau = \dfrac{dL}{dt}$.
Torque acting on a body is also given by relation:
$\vec{\tau} = \vec{r} \times \vec{F}$.
Complete answer:
For the given particle, we have the angular momentum L = 4t + 8. This means that it is changing with time because as the value of t changes, L changes too. Therefore, the rate of change of angular momentum becomes:
$\tau = \dfrac{dL}{dt} = \dfrac{d(4t + 8)}{dt} = 4$.
This means that the magnitude of torque is 4 units.
Now, the particle happens to be moving along a straight line y = x -4. This means that the position of the particle at any point is given by this equation. So, we can find the vector from the origin in the following manner:
1. Finding any two points that satisfy the equation for this line along which the particle moves. If we keep x = 0 we get y = - 4. If we keep x = 2, we get y = -2.
2. Now, our required vector will be joining these two points so, the vector going from (0, -4) to (2, -2) can be written as:
$\vec{r} = (2-0) \hat{i} + (-2 - (-4)) \hat{j} = 2 \hat{i} + 2 \hat{j} $.
The magnitude of this vector can be written as:
$r = \sqrt{2^2 +2^2} = 2\sqrt{2}$.
The magnitude of torque can be written simply as:
$\tau = rF$,
where F is the magnitude of force acting and r is the perpendicular distance from the axis.
So, we may write:
$F = \dfrac{\tau}{r} = \dfrac{4}{2\sqrt{2}} = \sqrt{2}$N.
So, the correct answer is “Option C”.
Note:
The tricky part in the question is to find out the vector $vec{r}$, which is supposed to be the distance perpendicular to which the force is acting. Also, as the question says 'angular momentum is varying as L = 4t + 8', one might assume that this is the rate of change of angular momentum but clearly as it is written in terms of L it is the expression for angular momentum itself.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE