Answer
Verified
461.7k+ views
Hint: In this problem, first we need to find the upper and lower limits of the first loop of the curve. Then, apply the formula for the area under the curve in polar coordinates to obtain the area of the first loop.
Complete step-by-step answer:
The diagram of the curve \[r = a\sin 3\theta\] is shown below.
From the above figure, it can be observed that the curve\[ r = a\sin 3\theta \] consists of three loops.
Substitute 0 for \[r\] in the equation of the curve \[r = a\sin 3\theta \] to obtain the upper and lower limits of the loop.
\[
\,\,\,\,\,\,0 = a\sin 3\theta \\
\Rightarrow \sin 3\theta = 0 \\
\Rightarrow 3\theta = 0\,\,{\text{or}}\,\,\pi \\
\Rightarrow \theta = 0\,\,{\text{or}}\,\,\dfrac{\pi }{3} \\
\]
Here, 0 is the lower limits and \[\dfrac{\pi }{3}\] is the upper limit of the first loop.
Now, the area \[A\] of the first loop is calculated as follows:
\[
\,\,\,\,\,\,A = \dfrac{1}{2}\int_0^{\dfrac{\pi }{3}} {{r^2}d\theta } \\
\Rightarrow A = \dfrac{1}{2}\int_0^{\dfrac{\pi }{3}} {{a^2}{{\sin }^2}3\theta d\theta } \\
\Rightarrow A = \dfrac{{{a^2}}}{2}\int_0^{\dfrac{\pi }{3}} {{{\sin }^2}3\theta d\theta } \\
\Rightarrow A = \dfrac{{{a^2}}}{2}\int_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{1 - \cos 6\theta }}{2}} \right)d\theta } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{{\sin }^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}} \right) \\
\]
Further, solve the above integral as shown below.
\[
\,\,\,\,\,\,\,A = \dfrac{{{a^2}}}{4}\int_0^{\dfrac{\pi }{3}} {\left( {1 - \cos 6\theta } \right)d\theta } \\
\Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\theta - \dfrac{{\sin 6\theta }}{6}} \right]_0^{\dfrac{\pi }{3}} \\
\Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\dfrac{\pi }{3} - \dfrac{{\sin 2\pi }}{6}} \right] \\
\Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\dfrac{\pi }{3} - 0} \right] \\
\Rightarrow A = \dfrac{{\pi {a^2}}}{{12}} \\
\]
Thus, the area of a loop of the curve \[r = a\sin 3\theta \] is \[\dfrac{{\pi {a^2}}}{{12}}\], hence, option (D) is correct answer.
Note: In this problem, there are three identical loops. The area of each loop is the same. While evaluating the integral, convert \[{\sin ^2}3\theta \] into \[\cos 6\theta \] using trigonometric identity.
Complete step-by-step answer:
The diagram of the curve \[r = a\sin 3\theta\] is shown below.
From the above figure, it can be observed that the curve\[ r = a\sin 3\theta \] consists of three loops.
Substitute 0 for \[r\] in the equation of the curve \[r = a\sin 3\theta \] to obtain the upper and lower limits of the loop.
\[
\,\,\,\,\,\,0 = a\sin 3\theta \\
\Rightarrow \sin 3\theta = 0 \\
\Rightarrow 3\theta = 0\,\,{\text{or}}\,\,\pi \\
\Rightarrow \theta = 0\,\,{\text{or}}\,\,\dfrac{\pi }{3} \\
\]
Here, 0 is the lower limits and \[\dfrac{\pi }{3}\] is the upper limit of the first loop.
Now, the area \[A\] of the first loop is calculated as follows:
\[
\,\,\,\,\,\,A = \dfrac{1}{2}\int_0^{\dfrac{\pi }{3}} {{r^2}d\theta } \\
\Rightarrow A = \dfrac{1}{2}\int_0^{\dfrac{\pi }{3}} {{a^2}{{\sin }^2}3\theta d\theta } \\
\Rightarrow A = \dfrac{{{a^2}}}{2}\int_0^{\dfrac{\pi }{3}} {{{\sin }^2}3\theta d\theta } \\
\Rightarrow A = \dfrac{{{a^2}}}{2}\int_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{1 - \cos 6\theta }}{2}} \right)d\theta } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{{\sin }^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}} \right) \\
\]
Further, solve the above integral as shown below.
\[
\,\,\,\,\,\,\,A = \dfrac{{{a^2}}}{4}\int_0^{\dfrac{\pi }{3}} {\left( {1 - \cos 6\theta } \right)d\theta } \\
\Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\theta - \dfrac{{\sin 6\theta }}{6}} \right]_0^{\dfrac{\pi }{3}} \\
\Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\dfrac{\pi }{3} - \dfrac{{\sin 2\pi }}{6}} \right] \\
\Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\dfrac{\pi }{3} - 0} \right] \\
\Rightarrow A = \dfrac{{\pi {a^2}}}{{12}} \\
\]
Thus, the area of a loop of the curve \[r = a\sin 3\theta \] is \[\dfrac{{\pi {a^2}}}{{12}}\], hence, option (D) is correct answer.
Note: In this problem, there are three identical loops. The area of each loop is the same. While evaluating the integral, convert \[{\sin ^2}3\theta \] into \[\cos 6\theta \] using trigonometric identity.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE