Answer
Verified
456.9k+ views
Hint: In this question, first we need to draw a quadrilateral ABCD divided in two triangles by making diagonal. After that we will apply the area of triangle formula in both the triangles and in the end, we will find the sum of both the areas. Let the vertices of the quadrilateral be A(1,2),B (6,2), C(5,3) and D(3,4) join BD to form two triangles $\vartriangle BCD$ and $\vartriangle BCD$.
As we know that,
Area of triangle with coordinates $(x,y),({x_2},{y_2}),({x_3},{y_3})$is given: $\dfrac{1}{2}\left[ {{x_1}({y_2} - {y_1}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Complete step-by-step answer:
Let us divide the quadrilateral ABCD into two triangles ABD and BCD.
Now, by using the formula.
Area of triangle with coordinates or vertices $(x,y),({x_2},{y_2}),({x_3},{y_3})$ is given by the formula $\dfrac{1}{2}\left[ {{x_1}({y_2} - {y_1}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$.
Area of triangle ABD with coordinates A (1,2), B (6,2) and D (3,4).
$\Rightarrow$ Area of triangle ABD = $\dfrac{1}{2}\left[ {1(2 - 1) + 6(4 - 2) + 3(2 - 2)} \right]$
$
= \dfrac{1}{2}\left[ {1 \times - 2 + 6 \times 2 + 3 \times 0} \right] \\
= \dfrac{1}{2}\left[ { - 2 + 12 + 0} \right] \\
= \dfrac{1}{2} \times 10 \\
= 5\,sq.units \\
$
Again, Area of triangle BCD with coordinates B (6,2), C (5,3) and D (3,4).
$\Rightarrow$ Area of triangle BCD $ = \dfrac{1}{2}\left[ {6(3 - 4) + 5(4 - 2) + 3(2 - 3)} \right]$
$
= \dfrac{1}{2}(6 \times - 1 + 5 \times 2 + 3 \times - 1) \\
= \dfrac{1}{2}(10 - 9) \\
= \dfrac{1}{2} = \,0.5\,sq.units \\
$$$
Now, Area of quadrilateral ABCD = Area of triangle ABD + Area of triangle BCD
= 5 sq. units + 0.5 sq. units
= 5.5 sq. units.
Note: In this question we need to calculate the area of two triangles. So that’s why we used triangle formulas. Also, we have used the concept of quadrilateral so we can also define it: A quadrilateral is a plane figure that has four sides or edges, and also has four corners or vertices. Quadrilateral with four sides like rectangle, rhombus, square, trapezoid, parallelogram, trapezium and kite. In a quadrilateral total interior angle is 360 $^\circ $. Every quadrilateral has four vertices, four angles, and four sides.
As we know that,
Area of triangle with coordinates $(x,y),({x_2},{y_2}),({x_3},{y_3})$is given: $\dfrac{1}{2}\left[ {{x_1}({y_2} - {y_1}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Complete step-by-step answer:
Let us divide the quadrilateral ABCD into two triangles ABD and BCD.
Now, by using the formula.
Area of triangle with coordinates or vertices $(x,y),({x_2},{y_2}),({x_3},{y_3})$ is given by the formula $\dfrac{1}{2}\left[ {{x_1}({y_2} - {y_1}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$.
Area of triangle ABD with coordinates A (1,2), B (6,2) and D (3,4).
$\Rightarrow$ Area of triangle ABD = $\dfrac{1}{2}\left[ {1(2 - 1) + 6(4 - 2) + 3(2 - 2)} \right]$
$
= \dfrac{1}{2}\left[ {1 \times - 2 + 6 \times 2 + 3 \times 0} \right] \\
= \dfrac{1}{2}\left[ { - 2 + 12 + 0} \right] \\
= \dfrac{1}{2} \times 10 \\
= 5\,sq.units \\
$
Again, Area of triangle BCD with coordinates B (6,2), C (5,3) and D (3,4).
$\Rightarrow$ Area of triangle BCD $ = \dfrac{1}{2}\left[ {6(3 - 4) + 5(4 - 2) + 3(2 - 3)} \right]$
$
= \dfrac{1}{2}(6 \times - 1 + 5 \times 2 + 3 \times - 1) \\
= \dfrac{1}{2}(10 - 9) \\
= \dfrac{1}{2} = \,0.5\,sq.units \\
$$$
Now, Area of quadrilateral ABCD = Area of triangle ABD + Area of triangle BCD
= 5 sq. units + 0.5 sq. units
= 5.5 sq. units.
Note: In this question we need to calculate the area of two triangles. So that’s why we used triangle formulas. Also, we have used the concept of quadrilateral so we can also define it: A quadrilateral is a plane figure that has four sides or edges, and also has four corners or vertices. Quadrilateral with four sides like rectangle, rhombus, square, trapezoid, parallelogram, trapezium and kite. In a quadrilateral total interior angle is 360 $^\circ $. Every quadrilateral has four vertices, four angles, and four sides.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers