Answer
Verified
497.4k+ views
Hint: In this question we have to find the present age of the child using the current average age of the family and the average age of family 4 years ago. So, here we will firstly find the total of their ages using the average which will eventually help us simplify things and reach the answer.
Complete step-by-step answer:
We have been given that the average age of a family of 6 members 4 years ago was 25 years.
So, Sum of the ages of the 6 family members 4 years ago was $25 \times 6 = 150$.
Now, if we know that the sum of ages of the 6 family members 4 years ago was 150, then now in the present the sum of ages of those 6 members will be $ = 150 + \left( {4 \times 6} \right) = 150 + 24 = 174$.
Now, in the question we are given that the average age of the family is still 25 in the present. But now in the family there are 7 people because a baby was born.
So, let us consider that the age of the baby is x.
So, the sum of ages of 7 members of the family = 174+ x.
So, using the formula to compute average we get,
$25 = \dfrac{{{\text{Sum of ages of 7 persons}}}}{7} = \dfrac{{174 + {\text{x}}}}{7}$
$ \Rightarrow 25 \times 7 = 174 + {\text{x}}$
$ \Rightarrow 175 = 174 + {\text{x}}$
$ \Rightarrow {\text{x}} = 1$
So, the present age of the child is 1 year.
Hence the correct option is C
Note: Whenever we face such types of problems the crux point to remember is that we need to have a good understanding of how to compute the average of some numbers. Also we should be able to solve linear equations in one variable which helps us in simplification of the problem and reach the correct answer.
Complete step-by-step answer:
We have been given that the average age of a family of 6 members 4 years ago was 25 years.
So, Sum of the ages of the 6 family members 4 years ago was $25 \times 6 = 150$.
Now, if we know that the sum of ages of the 6 family members 4 years ago was 150, then now in the present the sum of ages of those 6 members will be $ = 150 + \left( {4 \times 6} \right) = 150 + 24 = 174$.
Now, in the question we are given that the average age of the family is still 25 in the present. But now in the family there are 7 people because a baby was born.
So, let us consider that the age of the baby is x.
So, the sum of ages of 7 members of the family = 174+ x.
So, using the formula to compute average we get,
$25 = \dfrac{{{\text{Sum of ages of 7 persons}}}}{7} = \dfrac{{174 + {\text{x}}}}{7}$
$ \Rightarrow 25 \times 7 = 174 + {\text{x}}$
$ \Rightarrow 175 = 174 + {\text{x}}$
$ \Rightarrow {\text{x}} = 1$
So, the present age of the child is 1 year.
Hence the correct option is C
Note: Whenever we face such types of problems the crux point to remember is that we need to have a good understanding of how to compute the average of some numbers. Also we should be able to solve linear equations in one variable which helps us in simplification of the problem and reach the correct answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE